Shortcuts

Semi-supervised learning

Collection of utilities for semi-supervised learning where some part of the data is labeled and the other part is not.


Balanced classes

Example:

from pl_bolts.utils.semi_supervised import balance_classes
pl_bolts.utils.semi_supervised.balance_classes(X, Y, batch_size)[source]

Makes sure each batch has an equal amount of data from each class. Perfect balance.

Parameters
Return type

Tuple[ndarray, ndarray]

half labeled batches

Example:

from pl_bolts.utils.semi_supervised import balance_classes
pl_bolts.utils.semi_supervised.generate_half_labeled_batches(smaller_set_X, smaller_set_Y, larger_set_X, larger_set_Y, batch_size)[source]

Given a labeled dataset and an unlabeled dataset, this function generates a joint pair where half the batches are labeled and the other half is not.

Return type

Tuple[ndarray, ndarray]

Read the Docs v: latest
Versions
latest
stable
0.4.0
0.3.4
0.3.3
0.3.2
0.3.1
0.3.0
0.2.5
0.2.4
0.2.3
0.2.2
0.2.1
0.2.0
0.1.1
docs-build-rtd
0.1.0
Downloads
pdf
html
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.