Lightning-Bolts Documentation
Release 0.3.2

PyTorchLightning et al.

Mar 29, 2021






10

11

12

13

14

15

16

17

18

19

20

21

22

Installation
Introduction Guide
Model quality control
Build a Callback

Info Callbacks
Self-supervised Callbacks
Variational Callbacks
Vision Callbacks
DataModules

Sklearn Datamodule
Vision DataModules
Datasets
AsynchronousLoader
Losses

Object Detection
Reinforcement Learning
How to use models
Classic ML. Models
Autoencoders
Convolutional Architectures
GANs

Reinforcement Learning

START HERE

13
17
19
23
25
27
31
33
37
53
57
59
61
63
65
73
77
83
89

95




23

24

25

26

27

28

29

30

31

32

Self-supervised Learning

Learning Rate Schedulers

Self-supervised learning Transforms
Self-supervised learning

Semi-supervised learning

Self-supervised Learning Contrastive tasks
Contributing

PL Bolts Governance | Persons of interest
Changelog

Indices and tables

121

141

143

155

159

161

165

169

171

177




CHAPTER
ONE

INSTALLATION

You can install using pip

pip install lightning-bolts

Install bleeding-edge (no guarantees)

pip install git+https://github.com/PytorchLightning/lightning-bolts.git@master —-
—upgrade

In case you want to have full experience you can install all optional packages at once

pip install lightning-bolts|["extra"]



https://pypi.org/project/lightning-bolts/
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CHAPTER
TWO

Welcome to PyTorch Lightning Bolts!

Bolts is a Deep learning research and production toolbox of:
* SOTA pretrained models.
* Model components.

Callbacks.

¢ Losses.

¢ Datasets.

The Main goal of Bolts is to enable trying new ideas as fast as possible!

INTRODUCTION GUIDE

All models are tested (daily), benchmarked, documented and work on CPUs, TPUs, GPUs and 16-bit precision.

some examples!

from pl bolts.models import VAE
from pl _bolts.models.vision import GPT2, ImageGPT,

PixelCNN
from pl _bolts.models.self supervised import AMDIM, CPC_v2,

SimCLR, Moco_v2

from pl bolts.models import LinearRegression, LogisticRegression

from pl _bolts.models.gans import GAN

from pl bolts.callbacks import PrintTableMetricsCallback
from pl _bolts.datamodules import FashionMNISTDataModule,

—ImagenetDataModule

CIFAR1ODataModule,

Bolts are built for rapid idea iteration - subclass, override and train!

from pl bolts.models.vision import ImageGPT
from pl _bolts.models.self supervised import SimCLR

class VideoGPT (ImageGPT) :

def training step(self, batch, batch_idx):
x, y = batch
x = _shape_input (x)

logits

self.gpt (x)
simclr_features = self.simclr (x)

(continues on next page)
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(continued from previous page)

loss = self.criterion(logits.view(-1, logits.size(-1)), x.view(-1).long())
logs = {"loss": loss}
return {"loss": loss, "log": logs}

Mix and match data, modules and components as you please!

model = GAN (datamodule=ImagenetDataModule (PATH))
model = GAN (datamodule=FashionMNISTDataModule (PATH))
model = ImageGPT (datamodule=FashionMNISTDataModule (PATH))

And train on any hardware accelerator

import pytorch_lightning as pl
model = ImageGPT (datamodule=FashionMNISTDataModule (PATH))

# cpus
pl.Trainer.fit (model)

# gpus
pl.Trainer (gpus=8) .fit (model)

# tpus
pl.Trainer (tpu_cores=8) .fit (model)

Or pass in any dataset of your choice

model = ImageGPT ()

Trainer () .fit (
model,
train_dataloader=DatalLoader(...),
val_dataloader=Dataloader(...)

2.1 Community Built

Then lightning community builds bolts and contributes them to Bolts. The lightning team guarantees that contributions
are:

1. Rigorously tested (CPUs, GPUs, TPUs).
Rigorously documented.
Standardized via PyTorch Lightning.

Optimized for speed.

A

Checked for correctness.

4 Chapter 2. Introduction Guide
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2.1.1 How to contribute

We accept contributions directly to Bolts or via your own repository.

Note: We encourage you to have your own repository so we can link to it via our docs!

To contribute:
1. Submit a pull request to Bolts (we will help you finish it!).
We’ll help you add tests.
We’ll help you refactor models to work on (GPU, TPU, CPU)..
We’ll help you remove bottlenecks in your model.
We’ll help you write up documentation.
We’ll help you pretrain expensive models and host weights for you.

We’ll create proper attribution for you and link to your repo.

® Nk wN

Once all of this is ready, we will merge into bolts.

After your model or other contribution is in bolts, our team will make sure it maintains compatibility with the other
components of the library!

2.1.2 Contribution ideas

Don’t have something to contribute? Ping us on Slack or look at our Github issues!

We’ll help and guide you through the implementation / conversion

2.2 When to use Bolts

2.2.1 For pretrained models

Most bolts have pretrained weights trained on various datasets or algorithms. This is useful when you don’t have
enough data, time or money to do your own training.

For example, you could use a pretrained VAE to generate features for an image dataset.

from pl _bolts.models.autoencoders import VAE
from pl _bolts.models.self supervised import CPC_v2

modell = VAE (input_height=32, pretrained='imagenet2012")
encoder = modell.encoder
encoder.eval ()

# bolts are pretrained on different datasets
model2 = CPC_v2(encoder="'resnetl8', pretrained='imagenetl28') .freeze ()
model3 = CPC_v2 (encoder='resnetl8', pretrained='stl1l0').freeze()

2.2. When to use Bolts 5
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for (x, y) in own_data:
features = encoder (x)
feat2 = model2 (x)
feat3 = model3 (x)

# which is better?

2.2.2 To finetune on your data

If you have your own data, finetuning can often increase the performance. Since this is pure PyTorch you can use any
finetuning protocol you prefer.

Example 1: Unfrozen finetune

# unfrozen finetune

model = CPC_v2 (encoder="resnetl8', pretrained='"imagenetl28")
resnetl8 = model.encoder

# don't call .freeze()

classifier = LogisticRegression(...)
for (x, y) in own_data:

feats = resnetl8(x)
y_hat = classifier (feats)

Example 2: Freeze then unfreeze

# FREEZE!

model = CPC_v2 (encoder="resnetl8', pretrained='imagenetl28")
resnetl8 = model.encoder

resnetl8.eval ()

classifier = LogisticRegression(...)

for epoch in epochs:
for (x, y) in own_data:
feats = resnetl8 (x)
y_hat = classifier (feats)
loss = cross_entropy_with_logits (y_hat, vy)

# UNFREEZE after 10 epochs
if epoch == 10:
resnetl8.unfreeze ()

2.2.3 For research

Here is where bolts is very different than other libraries with models. It’s not just designed for production, but each
module is written to be easily extended for research.

from pl bolts.models.vision import ImageGPT
from pl _bolts.models.self supervised import SimCLR

class VideoGPT (ImageGPT) :

(continues on next page)
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(continued from previous page)

def

training_step(self, batch, batch_idx):
x, y = batch
x = _shape_input (x)

logits = self.gpt (x)

simclr_features = self.simclr (x)

# ,,,,,,,,,,,,,,,,,

# do something new with GPT logits + simclr_features

# ,,,,,,,,,,,,,,,,,

loss = self.criterion(logits.view(-1, logits.size(-1)), x.view(-1).long())
logs = {"loss": loss}

return {"loss": loss, "log": logs}

Or perhaps your research is in self_supervised_learning and you want to do a new SimCLR. In this case, the only thing
you want to change is the loss.

By subclassing you can focus on changing a single piece of a system without worrying that the other parts work
(because if they are in Bolts, then they do and we’ve tested it).

# subclass SimCLR and change ONLY what you want to try
class ComplexCLR (SimCLR) :

def

def

init_loss(self):
return self.new_xent_loss

new_xent_loss (self) :
out = torch.cat ([out_1, out_2], dim=0) n_samples = len (out)

# Full similarity matrix
cov = torch.mm(out, out.t().contiguous())

sim = torch.exp(cov / temperature)

# Negative similarity

mask = ~torch.eye(n_samples, device=sim.device) .bool ()

neg = sim.masked_select (mask) .view(n_samples, -1).sum(dim=-1)
# __________________

# some new thing we want to do

# ,,,,,,,,,,,,,,,,,,

# Positive similarity

pos = torch.exp (torch.sum(out_1 * out_2, dim=-1) / temperature)
pos = torch.cat ([pos, pos], dim=0)
loss = -torch.log(pos / neg) .mean ()

return loss

2.2. When to use Bolts 7




Lightning-Bolts Documentation, Release 0.3.2

2.3 Callbacks

Callbacks are arbitrary programs which can run at any points in time within a training loop in Lightning.

Bolts houses a collection of callbacks that are community contributed and can work in any Lightning Module!

from pl bolts.callbacks import PrintTableMetricsCallback
import pytorch_lightning as pl

trainer = pl.Trainer (callbacks=[PrintTableMetricsCallback()])

2.4 DataModules

In PyTorch, working with data has these major elements.
1. Downloading, saving and preparing the dataset.
2. Splitting into train, val and test.
3. For each split, applying different transforms

A DataModule groups together those actions into a single reproducible DataModule that can be shared around to
guarantee:

1. Consistent data preprocessing (download, splits, etc...)
2. The same exact splits

3. The same exact transforms

from pl bolts.datamodules import ImagenetDataModule
dm = ImagenetDataModule (data_dir=PATH)

# standard PyTorch!

train_loader = dm.train_dataloader ()
val_loader = dm.val_dataloader ()
test_loader = dm.test_dataloader ()

Trainer () .fit (
model,
train_loader,
val_loader

But when paired with PyTorch LightningModules (all bolts models), you can plug and play full dataset definitions
with the same splits, transforms, etc. ..

imagenet = ImagenetDataModule (PATH)

model = VAE (datamodule=imagenet)
model = ImageGPT (datamodule=imagenet)
model = GAN (datamodule=imagenet)

We even have prebuilt modules to bridge the gap between Numpy, Sklearn and PyTorch

8 Chapter 2. Introduction Guide
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from sklearn.datasets import load_boston
from pl _bolts.datamodules import SklearnDataModule

X, y = load_boston (return_X_ y=True)
datamodule = SklearnDataModule (X, vy)

model = LitModel (datamodule)

2.5 Regression Heroes

In case your job or research doesn’t need a “hammer”, we offer implementations of Classic ML models which benefit
from lightning’s multi-GPU and TPU support.

So, now you can run huge workloads scalably, without needing to do any engineering. For instance, here we can run
logistic Regression on Imagenet (each epoch takes about 3 minutes)!

from pl _bolts.models.regression import LogisticRegression
imagenet = ImagenetDataModule (PATH)

# 224 x 224 x 3
pixels_per_image = 150528

model = LogisticRegression (input_dim=pixels_per_image, num_classes=1000)
model.prepare_data = imagenet.prepare_data
trainer = Trainer (gpus=2)
trainer.fit (
model,

imagenet.train_dataloader (batch_size=256),
imagenet.val_dataloader (batch_size=256)

2.5.1 Linear Regression

Here’s an example for Linear regression

import pytorch lightning as pl
from pl bolts.datamodules import SklearnDataModule
from sklearn.datasets import load_boston

# link the numpy dataset to PyTorch
X, y = load_boston (return_X_y=True)
loaders = SklearnDataModule (X, V)

# training runs training batches while validating against a validation set
model = LinearRegression ()

trainer = pl.Trainer (num_gpus=8)

trainer.fit (model, train_dataloader=loaders.train_dataloader (), val_
—dataloaders=loaders.val_dataloader())

Once you’re done, you can run the test set if needed.

2.5. Regression Heroes 9
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trainer.test (test_dataloaders=loaders.test_dataloader ())

But more importantly, you can scale up to many GPUs, TPUs or even CPUs

# 8 GPUs
trainer = pl.Trainer (num_gpus=38)

# 8 TPU cores
trainer = pl.Trainer (tpu_cores=8)

# 32 GPUs
trainer = pl.Trainer (num_gpus=8, num_nodes=4)

# 128 CPUs
trainer = pl.Trainer (num_processes=128)

2.5.2 Logistic Regression

Here’s an example for logistic regression

from sklearn.datasets import load_iris

from pl_bolts.models.regression import LogisticRegression
from pl _bolts.datamodules import SklearnDataModule

import pytorch lightning as pl

# use any numpy or sklearn dataset
X, v = load_iris(return_X_y=True)
dm = SklearnDataModule (X, y, batch_size=12)

# build model
model = LogisticRegression (input_dim=4, num_classes=3)

# fit

trainer = pl.Trainer (tpu_cores=8, precision=16)

trainer.fit (model, train_dataloader=dm.train_dataloader (), val_dataloaders=dm.val_
—~dataloader ())

trainer.test (test_dataloaders=dm.test_dataloader())

Any input will be flattened across all dimensions except the first one (batch). This means images, sound, etc... work
out of the box.

# create dataset
dm = MNISTDataModule (num_workers=0, data_dir=tmpdir)

model = LogisticRegression (input_dim=28 x 28, num_classes=10, learning_rate=0.001)
model .prepare_data = dm.prepare_data

model.train_dataloader = dm.train_dataloader

model.val_dataloader = dm.val_dataloader

model.test_dataloader = dm.test_dataloader

trainer = pl.Trainer (max_epochs=2)
trainer.fit (model)
trainer.test (model)
# {test_acc: 0.92}

10 Chapter 2. Introduction Guide
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But more importantly, you can scale up to many GPUs, TPUs or even CPUs

# 8 GPUs
trainer = pl.Trainer (num_gpus=8)

# 8 TPUs
trainer = pl.Trainer (tpu_cores=8)

# 32 GPUs
trainer = pl.Trainer (num_gpus=8, num_nodes=4)

# 128 CPUs
trainer = pl.Trainer (num_processes=128)

2.6 Regular PyTorch

Everything in bolts also works with regular PyTorch since they are all just nn.Modules!

However, if you train using Lightning you don’t have to deal with engineering code :)

2.7 Command line support

Any bolt module can also be trained from the command line

cd pl_bolts/models/autoencoders/basic_vae
python basic_vae_pl_module.py

Each script accepts Argparse arguments for both the lightning trainer and the model

python basic_vae_pl_module.py --latent_dim 32 --batch_size 32 --gpus 4 —--max_epochs 12

2.6. Regular PyTorch 11
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CHAPTER
THREE

MODEL QUALITY CONTROL

For bolts to be added to the library we have a rigorous quality control checklist

3.1 Bolts vs my own repo

We hope you keep your own repo still! We want to link to it to let people know. However, by adding your contribution
to bolts you get these additional benefits!

1. More visibility! (more people all over the world use your code)
We test your code on every PR (CPUs, GPUs, TPUs).

We host the docs (and test on every PR).

We help you build thorough, beautiful documentation.

We help you build robust tests.

We’ll pretrain expensive models for you and host weights.

We will improve the speed of your models!

Eligible for invited talks to discuss your implementation.

Y ® Nk w N

Lightning swag + involvement in the broader contributor community :)

Note: You still get to keep your attribution and be recognized for your work!

Note: Bolts is a community library built by incredible people like you!

3.2 Contribution requirements

3.2.1 Benchmarked

Models have known performance results on common baseline datasets.

13
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3.2.2 Device agnostic

Models must work on CPUs, GPUs and TPUs without changing code. We help authors with this.

# bad
encoder.to (device)

3.2.3 Fast

We inspect models for computational inefficiencies and help authors meet the bar. Granted, sometimes the approaches
are slow for mathematical reasons. But anything related to engineering we help overcome.

# bad
mtx =
for xi in rows:
for yi in cols
mxt [xi, yi] =

good

= x.item() .numpy ()
= np.some_fx (x)
torch.tensor (x)

XX X s

3.2.4 Tested

Models are tested on every PR (on CPUs, GPUs and soon TPUs).
¢ Live build

e Tests

3.2.5 Modular

Models are modularized to be extended and reused easily.

# GOOD!
class LitVAE (pl.LightningModule) :

def init_prior(self, ...):
# enable users to override iIinteresting parts of each model

def init_posterior(self, ...):
# enable users to override interesting parts of each model

# BAD
class LitVAE (pl.LightningModule) :

def  init_ (self):
self.prior = .
self.posterior =

14 Chapter 3. Model quality control
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3.2.6 Attribution

Any models and weights that are contributed are attributed to you as the author(s).
We request that each contribution have:

* The original paper link

* The list of paper authors

* The link to the original paper code (if available)

¢ The link to your repo

* Your name and your team’s name as the implementation authors.

* Your team’s affiliation

* Any generated examples, or result plots.

» Hyperparameter configurations for the results.

Thank you for all your amazing contributions!

3.3 The bar seems high

If your model doesn’t yet meet this bar, no worries! Please open the PR and our team of core contributors will help
you get there!

3.4 Do you have contribution ideas?

Yes! Check the Github issues for requests from the Lightning team and the community! We’ll even work with you to
finish your implementation! Then we’ll help you pretrain it and cover the compute costs when possible.

3.3. The bar seems high 15
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CHAPTER
FOUR

BUILD A CALLBACK

This module houses a collection of callbacks that can be passed into the trainer

from pl _bolts.callbacks import PrintTableMetricsCallback
trainer = pl.Trainer (callbacks=[PrintTableMetricsCallback()])
# lossltrainﬁlosslvalilosslepoch

#
# 2.2541470527648926|2.2541470527648926 2.2158432006835938|0

4.1 What is a Callback

A callback is a self-contained program that can be intertwined into a training pipeline without polluting the main
research logic.

4.2 Create a Callback

Creating a callback is simple:

from pytorch_lightning.callbacks import Callback

class MyCallback (Callback)
def on_epoch_end(self, trainer, pl_module):
# do something

Please refer to Callback docs for a full list of the 20+ hooks available.

17
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CHAPTER
FIVE

INFO CALLBACKS

These callbacks give all sorts of useful information during training.

5.1 Print Table Metrics

This callback prints training metrics to a table. It’s very bare-bones for speed purposes.

class pl_bolts.callbacks.printing.PrintTableMetricsCallback
Bases: pytorch_lightning.callbacks.

Prints a table with the metrics in columns on every epoch end

Example:

from pl bolts.callbacks import PrintTableMetricsCallback

callback = PrintTableMetricsCallback ()

Pass into trainer like so:

trainer = pl.Trainer (callbacks=[callback])
trainer.fit (...)

# loss‘trainﬁloss‘valﬁloss epoch
#
# 2.2541470527648926‘2.2541470527648926 2.2158432006835938|0

19
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5.2 Data Monitoring in LightningModule

The data monitoring callbacks allow you to log and inspect the distribution of data that passes through the training step
and layers of the model. When used in combination with a supported logger, the TrainingDataMonitor creates
a histogram for each batch inputin training_step () and sends it to the logger:

from pl bolts.callbacks import TrainingDataMonitor
from pytorch_lightning import Trainer

# log the histograms of input data sent to LightningModule.training step
monitor = TrainingDataMonitor (log_every_n_steps=25)

model = YourLightningModule ()
trainer = Trainer (callbacks=[monitor])
trainer.fit ()

The second, more advanced ModuleDataMonitor callback tracks histograms for the data that passes through the
model itself and its submodules, i.e., it tracks all .forward() calls and registers the in- and outputs. You can track all or
just a selection of submodules:

from pl bolts.callbacks import ModuleDataMonitor
from pytorch_lightning import Trainer

# log the in- and output histograms of LightningModule's "forward’
monitor = ModuleDataMonitor ()

# all submodules in LightningModule
monitor = ModuleDataMonitor (submodules=True)

# specific submodules
monitor = ModuleDataMonitor (submodules=["generator", "generator.convl"])

model = YourLightningModule ()
trainer = Trainer (callbacks=[monitor])
trainer.fit ()

This is especially useful for debugging the data flow in complex models and to identify numerical instabilities.

5.3 Model Verification

5.3.1 Gradient-Check for Batch-Optimization

Gradient descent over a batch of samples can not only benefit the optimization but also leverages data parallelism.
However, one has to be careful not to mix data across the batch dimension. Only a small error in a reshape or
permutation operation results in the optimization getting stuck and you won’t even get a runtime error. How can one
tell if the model mixes data in the batch? A simple trick is to do the following:

1. run the model on an example batch (can be random data)

2. get the output batch and select the n-th sample (choose n)

3. compute a dummy loss value of only that sample and compute the gradient w.r.t the entire input batch
4

. observe that only the i-th sample in the input batch has non-zero gradient

20 Chapter 5. Info Callbacks
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If the gradient is non-zero for the other samples in the batch, it means the forward pass of the model is mixing data!
The BatchGradientVerificationCallback does all of that for you before training begins.

from pytorch_lightning import Trainer
from pl bolts.callbacks import BatchGradientVerificationCallback

model = YourLightningModule ()

verification = BatchGradientVerificationCallback ()
trainer = Trainer (callbacks=[verification])
trainer.fit (model)

This Callback will warn the user with the following message in case data mixing inside the batch is detected:

Your model is mixing data across the batch dimension.
This can lead to wrong gradient updates in the optimizer.
Check the operations that reshape and permute tensor dimensions in your model.

A non-Callback version Bat chGradientVerification that works with any PyTorch Module is also available:

from pl bolts.utils import BatchGradientVerification

model = YourPyTorchModel ()
verification = BatchGradientVerification (model)
valid = verification.check (input_array=torch.rand (2, 3, 4), sample_idx=1)

In this example we run the test on a batch size 2 by inspecting gradients on the second sample.

5.3. Model Verification 21
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CHAPTER
SIX

SELF-SUPERVISED CALLBACKS

Useful callbacks for self-supervised learning models

6.1 BYOLMAWeightUpdate

The exponential moving average weight-update rule from Bootstrap Your Own Latent (BYOL).

class pl_bolts.callbacks.byol_updates.BYOLMAWeightUpdate (initial_tau=0.996)
Bases: pytorch_lightning.

Weight update rule from BYOL.
Your model should have:
e self.online_network
e self.target_network

Updates the target_network params using an exponential moving average update rule weighted by tau. BYOL
claims this keeps the online_network from collapsing.

Note: Automatically increases tau from initial_tau to 1.0 with every training step

Example:

# model must have 2 attributes
model = Model ()
model.online_network =

model .target_network

trainer = Trainer (callbacks=[BYOLMAWeightUpdate()])

Parameters initial_ tauf (float) - starting tau. Auto-updates with every training step

23
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6.2 SSLOnlineEvaluator

Appends a MLP for fine-tuning to the given model. Callback has its own mini-inner loop.

class pl_bolts.callbacks.ssl_online.SSLOnlineEvaluator (dataset, drop_p=0.2,
hidden_dim=None,
z_dim=None,
num_classes=None)
Bases: pytorch_lightning.
Attaches a MLP for fine-tuning using the standard self-supervised protocol.

Example:

# your model must have 2 attributes
model = Model ()

model.z_dim = ... # the representation dim
model.num_classes = ... # the num of classes in the model
online_eval = SSLOnlineEvaluator (

z_dim=model.z_dim,
num_classes=model .num_classes,
dataset="'imagenet'

Parameters
* dataset{ (str)—ifstll0, need to get the labeled batch
* drop_p{ (float)— Dropout probability
* hidden_dim{ (Optional[int])— Hidden dimension for the fine-tune MLP
e z_dim{ (Optional[int]) — Representation dimension

e num_classes{ (Optional[int]) — Number of classes

24 Chapter 6. Self-supervised Callbacks
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CHAPTER
SEVEN

VARIATIONAL CALLBACKS

Useful callbacks for GANs, variational-autoencoders or anything with latent spaces.

7.1 Latent Dim Interpolator

Interpolates latent dims.

Example output:
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class pl_bolts.callbacks.variational.LatentDimInterpolator (interpolate_epoch_interval=20,
range_start=- 5,
range_end=35,
steps=11,
num_samples=2,
normalize=True)
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Bases: pytorch_lightning.callbacks.

Interpolates the latent space for a model by setting all dims to zero and stepping through the first two dims
increasing one unit at a time.

Default interpolates between [-5, 5] (-5, -4, -3, ..., 3,4, 5)

Example:

from pl bolts.callbacks import LatentDimInterpolator

Trainer (callbacks=[LatentDimInterpolator()])

Parameters

interpolate_epoch_interval{ (int) - default 20
range_start{ (int) — default -5

range_end{ (int) - default 5

steps{ (int)— number of step between start and end
num_samples{ (int) — default 2

normalize{ (bool) — default True (change image to (0, 1) range)
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CHAPTER
EIGHT

VISION CALLBACKS

Useful callbacks for vision models

8.1 Confused Logit

Shows how the input would have to change to move the prediction from one logit to the other
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Example outputs:

True: 5

B

o]

class pl _bolts.callbacks.vision.confused_logit.ConfusedLogitCallback (fop_k,
projec-
tion_factor=3,
min_logit_value=35.0,
log-
ging_batch_interval=20,

max_logit_difference=0.1)
Bases: pytorch_lightning.

Takes the logit predictions of a model and when the probabilities of two classes are very close, the model doesn’t
have high certainty that it should pick one vs the other class.

This callback shows how the input would have to change to swing the model from one label prediction to the
other.
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In this case, the network predicts a 5. .. but gives almost equal probability to an 8. The images show what about
the original 5 would have to change to make it more like a 5 or more like an 8.

For each confused logit the confused images are generated by taking the gradient from a logit wrt an input for
the top two closest logits.

Example:

from pl bolts.callbacks.vision import ConfusedLogitCallback
trainer = Trainer (callbacks=[ConfusedLogitCallback()])

Note: Whenever called, this model will look for self.last_batch and self.last_logits in the
LightningModule.

Note: This callback supports tensorboard only right now.

Authored by:

¢ Alfredo Canziani

Parameters
* top_kY (int)— How many “offending” images we should plot

* projection_factor{ (int) - How much to multiply the input image to make it look
more like this logit label

* min_logit_value{ (f1loat)— Only consider logit values above this threshold

* logging_batch_interval{ (int)-How frequently to inspect/potentially plot some-
thing

* max_logit_difference{ (float)— When the top 2 logits are within this threshold
we consider them confused

8.2 Tensorboard Image Generator

Generates images from a generative model and plots to tensorboard

class pl_bolts.callbacks.vision.image_generation.TensorboardGenerativeModelImageSampler (nun

Bases: pytorch_lightning.
Generates images and logs to tensorboard. Your model must implement the forward function for generation

Requirements:

28

Chapter 8. Vision Callbacks

nro
paa
nor
mail
ize-
nor
sca
paa


https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

Lightning-Bolts Documentation, Release 0.3.2

# model must have img_dim arg
model.img_dim = (1, 28, 28)

# model forward must work for sampling

z = torch.rand (batch_size, latent_dim)
img_samples = your_model (z)
Example:

from pl bolts.callbacks import TensorboardGenerativeModelImageSampler

trainer = Trainer (callbacks=[TensorboardGenerativeModelImageSampler ()])

Parameters
* num_samples{ (int)— Number of images displayed in the grid. Default: 3.

* nrow{ (int)— Number of images displayed in each row of the grid. The final grid size is
(B / nrow, nrow). Default: 8.

* padding (int)— Amount of padding. Default: 2.

* normalize{ (bool) — If True, shift the image to the range (0, 1), by the min and max
values specified by range. Default: False.

* norm_range{ (Optional[Tuple[int, int]])— Tuple (min, max) where min and max
are numbers, then these numbers are used to normalize the image. By default, min and max
are computed from the tensor.

* scale_each{ (bool) — If True, scale each image in the batch of images separately
rather than the (min, max) over all images. Default: False.

* pad_value{ (int)— Value for the padded pixels. Default: 0.
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CHAPTER
NINE

DATAMODULES

DataModules (introduced in PyTorch Lightning 0.9.0) decouple the data from a model. A DataModule is simply a
collection of a training dataloder, val dataloader and test dataloader. In addition, it specifies how to:

* Download/prepare data.
e Train/val/test splits.
* Transform

Then you can use it like this:

Example:

dm = MNISTDataModule ('path/to/data')
model = LitModel ()

trainer = Trainer ()
trainer.fit (model, datamodule=dm)

Or use it manually with plain PyTorch

Example:

dm = MNISTDataModule ('path/to/data')
for batch in dm.train_dataloader () :

for batch in dm.val_dataloader () :

for batch in dm.test_dataloader () :

Please visit the PyTorch Lightning documentation for more details on DataModules
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CHAPTER
TEN

SKLEARN DATAMODULE

Utilities to map sklearn or numpy datasets to PyTorch Dataloaders with automatic data splits and GPU/TPU support.

from sklearn.datasets import load_boston
from pl bolts.datamodules import SklearnDataModule

X, y = load_boston (return_X_y=True)
loaders = SklearnDataModule (X, V)
train_loader = loaders.train_dataloader (batch_size=32)
val_loader = loaders.val_dataloader (batch_size=32)
test_loader = loaders.test_dataloader (batch_size=32)

Or build your own torch datasets

from sklearn.datasets import load_boston
from pl _bolts.datamodules import SklearnDataset

X, y = load_boston (return_X_ y=True)
dataset = SklearnDataset (X, V)
loader = Dataloader (dataset)

10.1 Sklearn Dataset Class

Transforms a sklearn or numpy dataset to a PyTorch Dataset.

class pl_bolts.datamodules.sklearn_datamodule.SklearnDataset (X,

Yy,

X_transform=None,
y_transform=None)

Bases: torch.utils.data.

Mapping between numpy (or sklearn) datasets to PyTorch datasets.
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Example

>>> from sklearn.datasets import load_boston
>>> from pl_bolts.datamodules import SklearnDataset

>>> X, y = load_boston(return_X_y=True)
>>> dataset = SklearnDataset (X, V)
>>> len (dataset)
506
Parameters

* XJ (ndarray)— Numpy ndarray
* yJ (ndarray)— Numpy ndarray
* X _transform{ (Optional[Any]) — Any transform that works with Numpy arrays

* y_transform{ (Optional[Any]) — Any transform that works with Numpy arrays

10.2 Sklearn DataModule Class

Automatically generates the train, validation and test splits for a Numpy dataset. They are set up as dataloaders for
convenience. Optionally, you can pass in your own validation and test splits.

class pl_bolts.datamodules.sklearn_datamodule.SklearnDataModule (X, Y,
x_val=None,
y_val=None,
x_test=None,
y_test=None,
val_split=0.2,
test_split=0.1,
num_workers=2,
ran-
dom_state=1234,
shuffle=True,
batch_size=16,
pin_memory=False,
drop_last=False,
*args,

**wargs)
Bases: pytorch_lightning.

Automatically generates the train, validation and test splits for a Numpy dataset. They are set up as dataloaders
for convenience. Optionally, you can pass in your own validation and test splits.
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Example

>>>
>>>

>>>
>>>
>>>
>>>
>>>
355
>>>
12

>>>
>>>
>>>

100
>>>

>>>
>>>
>>>
51

>>>

from sklearn.datasets import load_boston
from pl bolts.datamodules import SklearnDataModule

X, y = load_boston(return_X_y=True)
loaders = SklearnDataModule (X, y, batch_size=32)

# train set

train_loader = loaders.train_dataloader ()
len(train_loader.dataset)
len(train_loader)

# validation set

val_loader = loaders.val_dataloader ()
len(val_loader.dataset)

len(val_loader)

# test set

test_loader = loaders.test_dataloader ()

len (test_loader.dataset)

len (test_loader)

10.2. Sklearn DataModule Class
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CHAPTER
ELEVEN

VISION DATAMODULES

The following are pre-built datamodules for computer-vision.

11.1 Supervised learning

These are standard vision datasets with the train, test, val splits pre-generated in Datal.oaders with the standard trans-
forms (and Normalization) values

11.1.1 BinaryMNIST

class pl_bolts.datamodules.binary_mnist_datamodule.BinaryMNISTDataModule (data_dir=None,
val_split=0.2,
num_workers=16,
nor-
mal-
ize=False,
batch_size=32,
seed=42,
shuf-
fle=False,
pin_memory=False,
drop_last=False,
*args,

*tkwargs)
Bases: pytorch_lightning.

Specs:
* 10 classes (1 per digit)
* Each image is (1 x 28 x 28)

Binary MNIST, train, val, test splits and transforms

Transforms:

mnist_transforms = transform_lib.Compose ([
transform_lib.ToTensor ()

1)
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Digit - 3 Digit - 7

Example:

from pl bolts.datamodules import BinaryMNISTDataModule

dm = BinaryMNISTDataModule ('.")
model = LitModel ()

Trainer () .fit (model, datamodule=dm)

Parameters
e data_dir{ (Optional[str]) — Where to save/load the data

* val_split{ (Union[int, float]) — Percent (float) or number (int) of samples to use
for the validation split

* num_workers{ (int)— How many workers to use for loading data
* normalize{ (bool) - If true applies image normalize

* batch_size{ (int) - How many samples per batch to load

seedf (int)— Random seed to be used for train/val/test splits

shuffle (bool) - If true shuffles the train data every epoch

* pin_memory{ (bool) — If true, the data loader will copy Tensors into CUDA pinned
memory before returning them

* drop_last{ (bool) - If true drops the last incomplete batch

default_ transforms ()
Default transform for the dataset

Return type Callable

property num_classes
Return: 10

Return type int
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11.1.2 CityScapes

Bases: pytorch_lightning.

Standard Cityscapes, train, val, test splits and transforms

class pl_bolts.datamodules.cityscapes_datamodule.CityscapesDataModule (data_dir,

qual-
ity_mode=fine’,
tar-
get_type='instance’,
num_workers=16,
batch_size=32,
seed=42,

shuf-

fle=False,
pin_memory=False,
drop_last=False,
*args,

*rkwargs)

Note: You need to have downloaded the Cityscapes dataset first and provide the path to where it is saved.

You can download the dataset here: https://www.cityscapes-dataset.com/

Specs:

* 30 classes (road, person, sidewalk, etc...)

* (image, target) - image dims: (3 x 1024 x 2048), target dims: (1024 x 2048)

Transforms:

transforms = transform_lib.Compose ([
transform_lib.ToTensor (),
transform_lib.Normalize (
mean=[0.28689554, 0.32513303, 0.28389177],
std=[0.18696375, 0.19017339, 0.18720214]

1

Example:

from pl bolts.datamodules import CityscapesDataModule

dm = CityscapesDataModule (PATH)

(continues on next page)

11.1. Supervised learning
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(continued from previous page)

model = LitModel ()

Trainer () .fit (model, datamodule=dm)

Or you can set your own transforms

Example:

dm.train_transforms =
dm.test_transforms = ...
dm.val_transforms = ...
dm.target_transforms = ...

Parameters

* data_dir{ (str)—where to load the data from path, i.e. where directory leftimg8bit and

gtFine or gtCoarse are located

* quality mode{ (str) — the quality mode to use, either ‘fine’ or ‘coarse’

* target_type{ (str) — targets to use, either ‘instance’ or ‘semantic’

* num_workers{ (int)—how many workers to use for loading data

* batch_size{ (int)— number of examples per training/eval step

* seedf (int) —random seed to be used for train/val/test splits

* shuffle{ (bool) - If true shuffles the data every epoch

* pin_memory{ (bool) — If true, the data loader will copy Tensors into CUDA pinned

memory before returning them

* drop_last{ (bool) —If true drops the last incomplete batch

test_dataloader ()
Cityscapes test set

Return type Dataloader

train_dataloader ()
Cityscapes train set

Return type Datal.oader

val_dataloader ()
Cityscapes val set

Return type Datal.oader

property num_classes
Return: 30

Return type int
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11.1.3 CIFAR-10

class pl_bolts.datamodules.cifarl0_datamodule.CIFAR10DataModule (data_dir=None,

val_split=0.2,
num_workers=16,
normal-

ize=Fualse,
batch_size=32,
seed=42,
shuffle=False,
pin_memory=False,
drop_last=False,
*args,

**kwargs)
Bases: pytorch_lightning.

Specs:
* 10 classes (1 per class)

* Each image is (3 x 32 x 32)

Standard CIFARI1O, train, val, test splits and transforms

Transforms:

mnist_transforms = transform_lib.Compose ([
transform_lib.ToTensor (),
transforms.Normalize (
mean=[x / 255.0 for x in [125.3, 123.0, 113.9]1,
std=[x / 255.0 for x in [63.0, 62.1, 66.7]]

1)

Example:
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from pl _bolts.datamodules import CIFARl1ODataModule

dm = CIFARl1O0DataModule (PATH)
model = LitModel ()

Trainer () .fit (model, datamodule=dm)

Or you can set your own transforms

Example:

dm.train_transforms =
dm.test_transforms =
dm.val_transforms =

Parameters

* data_dir{ (Optional[str]) — Where to save/load the data

* val_split{ (Union[int, £1loat]) — Percent (float) or number (int) of samples to use

for the validation split

* num_workers{ (int)— How many workers to use for loading data

* normalize{ (bool) - If true applies image normalize

* batch_size{ (int) - How many samples per batch to load

* seed{ (int)— Random seed to be used for train/val/test splits

* shuffle{ (bool)—If true shuffles the train data every epoch

* pin_memory{ (bool) — If true, the data loader will copy Tensors into CUDA pinned

memory before returning them

* drop_last{ (bool) - If true drops the last incomplete batch

default_ transforms ()
Default transform for the dataset

Return type Callable

property num_classes
Return: 10

Return type int
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11.1.4 FashionMNIST

class pl_bolts.datamodules.fashion_mnist_datamodule.FashionMNISTDataModule (data_dir=None,
val_split=0.2,
num_workers=16,
nor-
mal-
ize=False,
batch_size=32,
seed=42,
shuf-
fle=False,
pin_memory=False,
drop_last=False,
*args,

**kwargs)
Bases: pytorch_lightning.

0
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Specs:
* 10 classes (1 per type)
* Each image is (1 x 28 x 28)

Standard FashionMNIST, train, val, test splits and transforms

Transforms:

mnist_transforms = transform_lib.Compose ([
transform_lib.ToTensor ()

1)

Example:
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from pl _bolts.datamodules import FashionMNISTDataModule

dm = FashionMNISTDataModule('.")
model LitModel ()

Trainer () .fit (model, datamodule=dm)

Parameters
* data_dir{ (Optional[str])— Where to save/load the data

* val_split{ (Union[int, float]) — Percent (float) or number (int) of samples to use
for the validation split

* num_workers{ (int)— How many workers to use for loading data
* normalize{ (bool) - If true applies image normalize

* batch_size (int) - How many samples per batch to load

* seed{ (int)— Random seed to be used for train/val/test splits

* shuffle{ (bool)—If true shuffles the train data every epoch

* pin_memory{ (bool) — If true, the data loader will copy Tensors into CUDA pinned
memory before returning them

* drop_last{ (bool) - If true drops the last incomplete batch

default_ transforms ()
Default transform for the dataset

Return type Callable

property num_classes
Return: 10

Return type int

11.1.5 Imagenet

class pl_bolts.datamodules.imagenet_datamodule.ImagenetDataModule (data_dir,
meta_dir=None,
num_imgs_per_val_class=50,
im-
age_size=224,
num_workers=16,
batch_size=32,
shuf-
fle=False,
pin_memory=False,
drop_last=False,
*args,

**kewargs)
Bases: pytorch_lightning.

Specs:
¢ 1000 classes
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» Each image is (3 x varies x varies) (here we default to 3 x 224 x 224)

Imagenet train, val and test dataloaders.

The train set is the imagenet train.

The val set is taken from the train set with num_imgs_per_val_class images per class. For example if
num_imgs_per_val_class=2 then there will be 2,000 images in the validation set.

The test set is the official imagenet validation set.

Example:

model

from pl _bolts.datamodules import ImagenetDataModule

dm = ImagenetDataModule (IMAGENET_PATH)
= LitModel ()

Trainer () .fit (model, datamodule=dm)

Parameters

data_dir{ (str) - path to the imagenet dataset file
meta_dir{ (Optional[str]) — path to meta.bin file

num_imgs_per_val_class{ (int) — how many images per class for the validation
set

image_size{ (int) - final image size
num_workers{ (int)—how many data workers

batch_size{ (int) — batch_size
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* shufflef (bool) - If true shuffles the data every epoch

* pin_memory{ (bool) — If true, the data loader will copy Tensors into CUDA pinned
memory before returning them

* drop_last{ (bool) - If true drops the last incomplete batch

prepare_data ()
This method already assumes you have imagenet2012 downloaded. It validates the data using the meta.bin.

Warning: Please download imagenet on your own first.

Return type None

test_dataloader ()
Uses the validation split of imagenet2012 for testing

Return type Dataloader

train_dataloader ()
Uses the train split of imagenet2012 and puts away a portion of it for the validation split

Return type Dataloader

train_transform()
The standard imagenet transforms

transform_lib.Compose ([

transform_lib.RandomResizedCrop (self.image_size),
transform_lib.RandomHorizontalFlip(),
transform_lib.ToTensor (),
transform_lib.Normalize (

mean=[0.485, 0.456, 0.406],

std=[0.229, 0.224, 0.225]
) 4

Return type Callable

val_dataloader ()
Uses the part of the train split of imagenet2012 that was not used for training via num_imgs_per_val_class

Parameters
* batch_size{ - the batch size
* transforms{ — the transforms
Return type Dataloader

val _transform()
The standard imagenet transforms for validation

transform_lib.Compose ([
transform_lib.Resize(self.image_size + 32),
transform_lib.CenterCrop(self.image_size),
transform_lib.ToTensor (),
transform_lib.Normalize (
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]

(continues on next page)
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(continued from previous page)

Return type Callable

property num classes
Return:

1000

Return type int

11.1.6 MNIST

class pl_bolts.datamodules.mnist_datamodule.MNISTDataModule (data_dir=None,

Bases: pytorch_lightning.

Digit - 3

1]

10

Specs:
* 10 classes (1 per digit)
* Each image is (1 x 28 x 28)

Standard MNIST, train, val, test splits and transforms

Transforms:

val_split=0.2,
num_workers=16,
normalize=False,
batch_size=32,
seed=42,
fle=False,
pin_memory=False,
drop_last=False,
*args, **kwargs)

shuf-

Digit - 8

11.1. Supervised learning
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mnist_transforms = transform_lib.Compose ([
transform_lib.ToTensor ()

1

Example:

from pl bolts.datamodules import MNISTDataModule

dm = MNISTDataModule('.")
model = LitModel ()

Trainer () .fit (model, datamodule=dm)

Parameters
e data_dir{ (Optional[str])— Where to save/load the data

* val_split{ (Union[int, float]) — Percent (float) or number (int) of samples to use
for the validation split

* num_workers{ (int)— How many workers to use for loading data
* normalize{ (bool) - If true applies image normalize

* batch_size{ (int) - How many samples per batch to load

* seed{ (int)— Random seed to be used for train/val/test splits

* shuffle (bool) - If true shuffles the train data every epoch

* pin_memory{ (bool) — If true, the data loader will copy Tensors into CUDA pinned
memory before returning them

* drop_last{ (bool) - If true drops the last incomplete batch

default_transforms ()
Default transform for the dataset

Return type Callable

property num classes
Return: 10

Return type int

11.2 Semi-supervised learning

The following datasets have support for unlabeled training and semi-supervised learning where only a few examples
are labeled.
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11.2.1 Imagenet (ssl)

class pl_bolts.datamodules.ssl_imagenet_datamodule.SSLImagenetDataModule (data_dir,
meta_dir=None,
num_workers=16,
batch_size=32,
shuf-
fle=False,
pin_memory=False,
drop_last=False,
*args,
**kwargs)
Bases: pytorch_lightning.

11.2.2 STL-10

class pl_bolts.datamodules.st110_datamodule.STL10DataModule (data_dir=None,
unla-
beled_val_split=5000,
train_val_split=500,
num_workers=16,
batch_size=32,
seed=42, shuf-
fle=False,
pin_memory=False,
drop_last=False,
*args, **kwargs)
Bases: pytorch_lightning.

ship dog deer bird ship cat dog dog

ERTYAOQONSE

horse horse ship frog bird ship bird cat
o b ot
T ELVELIL L.

automobile ship deer truck dog deer automobile horse

ESwaAESN

Specs:

* 10 classes (1 per type)

* Each image is (3 x 96 x 96)
Standard STL-10, train, val, test splits and transforms. STL-10 has support for doing validation splits on the
labeled or unlabeled splits

Transforms:
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mnist_transforms = transform_lib.Compose ([
transform_lib.ToTensor (),
transforms.Normalize (
mean=(0.43, 0.42, 0.39),
std=(0.27, 0.26, 0.27)

1)

Example:

from pl _bolts.datamodules import STL10DataModule

dm = STLl0DataModule (PATH)
model = LitModel ()

Trainer () .fit (model, datamodule=dm)

Parameters
* data_dir{ (Optional[str])— where to save/load the data

* unlabeled val_split{ (int)—how many images from the unlabeled training split
to use for validation

* train_val_split{ (int)—how many images from the labeled training split to use for
validation

* num_workers{ (int)—how many workers to use for loading data
e batch_size{ (int) — the batch size

* seed{ (int) —random seed to be used for train/val/test splits

* shufflef (bool) - If true shuffles the data every epoch

* pin_memory{ (bool) — If true, the data loader will copy Tensors into CUDA pinned
memory before returning them

* drop_last{ (bool) —If true drops the last incomplete batch

prepare_data ()
Downloads the unlabeled, train and test split

Return type None

test_dataloader ()
Loads the test split of STL10

Parameters
e batch_size{ —the batch size
* transforms{ - the transforms
Return type DatalLoader

train_dataloader ()
Loads the ‘unlabeled’ split minus a portion set aside for validation via unlabeled_val_split.

Return type Dataloader

train_dataloader mixed()
Loads a portion of the ‘unlabeled’ training data and ‘train’ (labeled) data. both portions have a subset
removed for validation via unlabeled_val_split and train_val_split
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Parameters

* batch_size{ - the batch size

* transforms{ — a sequence of transforms
Return type Dataloader

val_dataloader ()
Loads a portion of the ‘unlabeled’ training data set aside for validation The val dataset = (unlabeled -
train_val_split)

Parameters

e batch_size{ — the batch size

* transforms{ — a sequence of transforms
Return type Dataloader

val_dataloader mixed ()
Loads a portion of the ‘unlabeled’ training data set aside for validation along with the portion of the ‘train’
dataset to be used for validation

unlabeled_val = (unlabeled - train_val_split)
labeled_val = (train- train_val_split)
full_val = unlabeled_val + labeled_val
Parameters
* batch_size{ - the batch size
* transforms{ — a sequence of transforms

Return type Dataloader
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CHAPTER
TWELVE

Collection of useful datasets

DATASETS

12.1 Debugging

Use these datasets to debug

12.1.1 DummyDataset

class pl_bolts.datasets.dummy_dataset .DummyDataset (*shapes, num_samples=10000)

Bases: torch.utils.data.

Generate a dummy dataset

Example

>>> from pl_bolts.datasets import DummyDataset

>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>

>>>

torch.Size

from torch.utils.data import Dataloader
# mnist dims

ds = DummyDataset ((1, 28, 28), (1, ))
dl = DatalLoader (ds, batch_size=7)

# get first batch

batch = next (iter(dl))

x, y = batch

x.size ()
)
[

y.size

(

torch.Size([7, 1, 28, 28])
(
(L7,

171)

Parameters
* xshapes/ - list of shapes

* num_samples{ (int)—how many samples to use in this dataset

53



https://docs.python.org/3/library/functions.html#int

Lightning-Bolts Documentation, Release 0.3.2

12.1.2 DummyDetectionDataset

class pl_bolts.datasets.dummy_dataset .DummyDetectionDataset (img_shape=(3, 256,
256), num_boxes=1,
num_classes=2,

num_samples=10000)
Bases: torch.utils.data.

Generate a dummy dataset for detection

Example

>>> from pl bolts.datasets import DummyDetectionDataset
>>> from torch.utils.data import Dataloader

>>> ds = DummyDetectionDataset ()

>>> dl = DatalLoader (ds, batch_size=7)

Parameters
* xshapes/ - list of shapes

* num_samples{ (int)—how many samples to use in this dataset

12.1.3 RandomDataset

class pl_bolts.datasets.dummy_dataset .RandomDataset (size, num_samples=250)
Bases: torch.utils.data.

Generate a dummy dataset

Example

>>> from pl bolts.datasets import RandomDataset
>>> from torch.utils.data import Dataloader

>>> ds = RandomDataset (10)

>>> dl = DatalLoader (ds, batch_size=7)

Parameters
* size{ (int)—tuple

* num_samples{ (int)— number of samples

12.1.4 RandomDictDataset

class pl_bolts.datasets.dummy_dataset .RandomDictDataset (size, num_samples=250)
Bases: torch.utils.data.

Generate a dummy dataset with a dict structure
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Example

>>>
>>>
>>>
>>>

from pl bolts.datasets import RandomDictDataset
from torch.utils.data import Dataloader

ds = RandomDictDataset (10)

dl = DatalLoader (ds, batch_size=7)

Parameters
e size{ (int) - tuple

* num_samples{ (int)— number of samples

12.1.5 RandomDictStringDataset

class pl_bolts.datasets.dummy_dataset.RandomDictStringDataset (size,
num_samples=250)

Bases: torch.utils.data.

Generate a dummy dataset with strings

Example

>>>
>>>
>>>
>>>

from pl bolts.datasets import RandomDictStringDataset
from torch.utils.data import DatalLoader

ds = RandomDictStringDataset (10)

dl = DatalLoader (ds, batch_size=7)

Parameters
* size{ (int) — tuple

* num_samples{ (int)— number of samples

12.1. Debugging

55



https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Lightning-Bolts Documentation, Release 0.3.2

56

Chapter 12. Datasets



CHAPTER
THIRTEEN

ASYNCHRONOUSLOADER

This dataloader behaves identically to the standard pytorch dataloader, but will transfer data asynchronously to the
GPU with training. You can also use it to wrap an existing dataloader.

Example:

dataloader = AsynchronousLoader (DatalLoader (ds, batch_size=16), device=device)

for b in dataloader:

class pl_bolts.datamodules.async_dataloader.AsynchronousLoader (data, de-
vice=torch.device,
q_size=10,
num_batches=None,

**kwargs)
Bases: object

Class for asynchronously loading from CPU memory to device memory with Datal.oader.

Note that this only works for single GPU training, multiGPU uses PyTorch’s DataParallel or DistributedData-
Parallel which uses its own code for transferring data across GPUs. This could just break or make things slower
with DataParallel or DistributedDataParallel.

Parameters

* dataf (Union[DataLoader, Dataset]) — The PyTorch Dataset or Datal.oader we’re
using to load.

* device{ (device) — The PyTorch device we are loading to
* g size{ (int) - Size of the queue used to store the data loaded to the device

* num batches{ (Optional[int]) — Number of batches to load. This must be set if the
dataloader doesn’t have a finite __len__. It will also override DatalLoader.__len__ if set and
DatalLoader has a __len__. Otherwise it can be left as None

* xxkwargs{ — Any additional arguments to pass to the dataloader if we’re constructing one
here
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CHAPTER
FOURTEEN

LOSSES

This package lists common losses across research domains (This is a work in progress. If you have any losses you
want to contribute, please submit a PR!)

Note: this module is a work in progress

14.1 Your Loss

We’re cleaning up many of our losses, but in the meantime, submit a PR to add your loss here!
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CHAPTER
FIFTEEN

OBJECT DETECTION

These are common losses used in object detection.

15.1 GloU Loss

pl_bolts.losses.object_detection.giou_loss (preds, target)
Calculates the generalized intersection over union loss.

It has been proposed in Generalized Intersection over Union: A Metric and A Loss for Bounding Box Regres-
sion.

Parameters

* preds{ (Tensor) — an Nx4 batch of prediction bounding boxes with representation
[x_min, y_min, xX_max, y_max]

* target{ (Tensor) — an Mx4 batch of target bounding boxes with representation
[x_min, y_min, x_max, y_max]

Example

>>> import torch

>>> from pl_bolts.losses.object_detection import giou_loss
>>> preds = torch.tensor([[100, 100, 200, 200]1)

>>> target = torch.tensor([[150, 150, 250, 250]])

>>> giou_loss (preds, target)

tensor ([[1.0794711])

Return type Tensor

Returns GIoU loss in an NxM tensor containing the pairwise GIoU loss for every element in preds
and target, where N is the number of prediction bounding boxes and M is the number of target
bounding boxes
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15.2 loU Loss

pl_bolts.losses.object_detection.iou_loss (preds, target)

Calculates the intersection over union loss.

Parameters

* preds{ (Tensor) — batch of prediction bounding boxes with representation [x_min,
y_min, x_max, y_max]

* target{ (Tensor) — batch of target bounding boxes with representation [x_min,
y_min, xX_max, y_max]

Example

>>>
>>>
>>>
>>>
>>>

import torch

from pl _bolts.losses.object_detection import iou_loss
preds = torch.tensor ([[100, 100, 200, 200]11)

target = torch.tensor([[150, 150, 250, 25011)
iou_loss (preds, target)

tensor ([[0.8571]1])

Return type Tensor

Returns IoU loss
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CHAPTER
SIXTEEN

REINFORCEMENT LEARNING

These are common losses used in RL.

16.1 DQN Loss

pl_bolts.losses.rl.dqn_1loss (batch, net, target_net, gamma=0.99)
Calculates the mse loss using a mini batch from the replay buffer

Parameters
* batch{ (Tuple[Tensor, Tensor])— current mini batch of replay data
* net{ (Module)— main training network
* target_net{ (Module) — target network of the main training network
e gamma{ (float) - discount factor

Return type Tensor

Returns loss

16.2 Double DQN Loss

pl_bolts.losses.rl.double_dqn_loss (batch, net, target_net, gamma=0.99)
Calculates the mse loss using a mini batch from the replay buffer. This uses an improvement to the original
DQN loss by using the double dqn. This is shown by using the actions of the train network to pick the value
from the target network. This code is heavily commented in order to explain the process clearly

Parameters
* batch{ (Tuple[Tensor, Tensor]) — current mini batch of replay data
* net{ (Module)— main training network
* target_net{ (Module) — target network of the main training network
» gamma{ (float) — discount factor

Return type Tensor

Returns loss
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16.3 Per DQN Loss

pl_bolts.losses.rl.per_dqgn_loss (batch, batch_weights, net, target_net, gamma=0.99)
Calculates the mse loss with the priority weights of the batch from the PER buffer

Parameters
* batch{ (Tuple[Tensor, Tensor])— current mini batch of replay data
* batch_weights{ (List)—how each of these samples are weighted in terms of priority
* net{ (Module)— main training network
* target_net{ (Module) — target network of the main training network
* gamma (float) — discount factor
Return type Tuple[Tensor,ndarray]

Returns loss and batch_weights
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CHAPTER
SEVENTEEN

HOW TO USE MODELS

Models are meant to be “bolted” onto your research or production cases.

Bolts are meant to be used in the following ways

17.1 Predicting on your data

Most bolts have pretrained weights trained on various datasets or algorithms. This is useful when you don’t have
enough data, time or money to do your own training.

For example, you could use a pretrained VAE to generate features for an image dataset.

from pl _bolts.models.self supervised import SimCLR

weight_path = 'https://pl-bolts-weights.s3.us-east-2.amazonaws.com/simclr/bolts_
—simclr_imagenet/simclr_imagenet.ckpt'

simclr = SimCLR.load_from_checkpoint (weight_path, strict=False)

encoder = simclr.encoder

encoder.eval ()

for (x, y) in own_data:
features = encoder (x)

The advantage of bolts is that each system can be decomposed and used in interesting ways. For instance, this
resnet50 was trained using self-supervised learning (no labels) on Imagenet, and thus might perform better than the
same resnet50 trained with labels

# trained without labels
from pl _bolts.models.self supervised import SimCLR

weight_path = 'https://pl-bolts-weights.s3.us-east-2.amazonaws.com/simclr/bolts_
—simclr_imagenet/simclr_imagenet.ckpt'

simclr = SimCLR.load_from_checkpoint (weight_path, strict=False)
resnet50_unsupervised = simclr.encoder.eval ()

# trained with labels
from torchvision.models import resnetb50
resnet50_supervised = resnet50 (pretrained=True)
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# perhaps the features when trained without labels are much better for classification,,
—or other tasks

x = image_sample ()

unsup_feats = resnet50_unsupervised (x)

sup_feats = resnet50_supervised(x)

# which one will be better?

Bolts are often trained on more than just one dataset.

from pl _bolts.models.self supervised import SimCLR

# imagenet weights

weight_path = 'https://pl-bolts-weights.s3.us-east-2.amazonaws.com/simclr/bolts_
—simclr_imagenet/simclr_imagenet.ckpt'

simclr = SimCLR.load_from_checkpoint (weight_path, strict=False)

simclr. freeze ()

17.2 Finetuning on your data

If you have a little bit of data and can pay for a bit of training, it’s often better to finetune on your own data.

To finetune you have two options unfrozen finetuning or unfrozen later.

17.2.1 Unfrozen Finetuning

In this approach, we load the pretrained model and unfreeze from the beginning

from pl _bolts.models.self supervised import SimCLR

weight_path = 'https://pl-bolts-weights.s3.us-east-2.amazonaws.com/simclr/bolts_
—simclr_imagenet/simclr_imagenet.ckpt'

simclr = SimCLR.load_from_checkpoint (weight_path, strict=False)

resnet50 = simclr.encoder

# don't call .freeze()

classifier = LogisticRegression(...)

for (x, y) in own_data:

feats = resnet50 (x)
y_hat = classifier (feats)
Or as a LightningModule

class FineTuner (pl.LightningModule) :

def _ init_ (self, encoder):
self.encoder = encoder
self.classifier = LogisticRegression(...)

(continues on next page)
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(continued from previous page)

def training step(self, batch, batch_idx):

(x, y) = batch
feats = self.encoder (x)
y_hat = self.classifier (feats)

loss = cross_entropy_with_logits (y_hat, vy)
return loss

trainer = Trainer (gpus=2)
model = FineTuner (resnetb50)
trainer.fit (model)

Sometimes this works well, but more often it’s better to keep the encoder frozen for a while

17.2.2 Freeze then unfreeze

The approach that works best most often is to freeze first then unfreeze later

# freeze!
from pl _bolts.models.self supervised import SimCLR

weight_path = 'https://pl-bolts-weights.s3.us-east-2.amazonaws.com/simclr/bolts_
—simclr_imagenet/simclr_imagenet.ckpt'

simclr = SimCLR.load_from_checkpoint (weight_path, strict=False)

resnet50 = simclr.encoder

resnet50.eval ()

classifier = LogisticRegression(...)

for epoch in epochs:
for (x, y) in own_data:
feats = resnet50 (x)
y_hat = classifier (feats)
loss = cross_entropy_with_logits (y_hat, vy)

# unfreeze after 10 epochs
if epoch == 10:
resnet50.unfreeze ()

Note: In practice, unfreezing later works MUCH better.

Or in Lightning as a Callback so you don’t pollute your research code.

class UnFreezeCallback (Callback) :

def on_epoch_end(self, trainer, pl_module):
if trainer.current_epoch == 10.
encoder.unfreeze ()

trainer = Trainer (gpus=2, callbacks=[UnFreezeCallback()])
model = FineTuner (resnet50)
trainer.fit (model)

Unless you still need to mix it into your research code.
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class FineTuner (pl.LightningModule) :

def _ init__ (self, encoder):
self.encoder = encoder
self.classifier = LogisticRegression(...)

def training_ step(self, batch, batch_idx):
# option 1 - (not recommended because it's messy)

if self.trainer.current_epoch == 10:
self.encoder.unfreeze ()

(x, y) = batch
feats = self.encoder (x)
y_hat = self.classifier (feats)

loss = cross_entropy_with_logits (y_hat, vy)
return loss

def on_epoch_end(self, trainer, pl_module):
# a hook is cleaner (but a callback is much better)
if self.trainer.current_epoch == 10:
self.encoder.unfreeze ()

17.2.3 Hyperparameter search

For finetuning to work well, you should try many versions of the model hyperparameters. Otherwise you’re unlikely
to get the most value out of your data.

from pl _bolts.models.autoencoders import VAE

learning_rates = [0.01, 0.001, 0.0001]
hidden_dim = [128, 256, 512]

for 1lr in learning_rates:
for hd in hidden_dim:
vae = VAE (input_height=32, hidden_dim=hd, learning_rate=lr)
trainer = Trainer ()
trainer.fit (vae)

17.3 Train from scratch

If you do have enough data and compute resources, then you could try training from scratch.

# get data
train_data = DatalLoader (YourDataset)
val_data = DatalLoader (YourDataset)

# use any bolts model without pretraining
model = VAE ()

# fit!

(continues on next page)
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trainer = Trainer (gpus=2)
trainer.fit (model, train_dataloader=train_data, val_dataloaders=val_data)

Note: For this to work well, make sure you have enough data and time to train these models!

17.4 For research

What separates bolts from all the other libraries out there is that bolts is built by and used by Al researchers. This
means every single bolt is modularized so that it can be easily extended or mixed with arbitrary parts of the rest of the
code-base.

17.4.1 Extending work

Perhaps a research project requires modifying a part of a know approach. In this case, you’re better off only changing
that part of a system that is already know to perform well. Otherwise, you risk not implementing the work correctly.

Example 1: Changing the prior or approx posterior of a VAE

from pl _bolts.models.autoencoders import VAE
class MyVAEFlavor (VAE) :

def init_prior(self, z_mu, z_std):
P = MyPriorDistribution

# default is standard normal

# P = distributions.normal.Normal (loc=torch.zeros_1like (z_mu), scale=torch.
—ones_like(z_std))

return P

def init_posterior(self, z_mu, z_std):
Q = MyPosteriorDistribution
# default is normal (z_mu, z_sigma)
# O = distributions.normal.Normal (loc=z_mu, scale=z_std)
return Q

And of course train it with lightning.

model = MyVAEFlavor ()
trainer = Trainer ()
trainer.fit (model)

In just a few lines of code you changed something fundamental about a VAE... This means you can iterate through
ideas much faster knowing that the bolt implementation and the training loop are CORRECT and TESTED.

If your model doesn’t work with the new P, Q, then you can discard that research idea much faster than trying to figure
out if your VAE implementation was correct, or if your training loop was correct.

Example 2: Changing the generator step of a GAN
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from pl_bolts.models.gans import GAN
class FancyGAN (GAN) :

def generator_step(self, x):
# sample noise
z = torch.randn (x.shape[0], self.hparams.latent_dim)
z = z.type_as(x)

# generate images
self.generated_imgs = self (z)

# ground truth result (ie: all real)
real = torch.ones(x.size(0), 1)

real = real.type_as(x)
g_loss = self.generator_loss (real)
tgdm_dict = {'g_loss': g_loss}
output = OrderedDict ({

'loss': g_loss,

'progress_bar': tgdm_dict,
'"log': tgdm_dict
})

return output

Example 3: Changing the way the loss is calculated in a contrastive self-supervised learning approach

from pl bolts.models.self supervised import AMDIM
class MyDIM (AMDIM) :

def validation_step(self, batch, batch_nb):
[img_1, img_2], labels = batch

# generate features
rl x1, r5_x1, r7_x1, rl_x2, r5_x2, r7_x2 = self.forward(img_1, img_2)

# Contrastive task

loss, lgt_reg = self.contrastive_task((rl_x1, r5_x1, r7_x1), (rl_x2, r5_x2,
—r7_x2))
unsupervised_loss = loss.sum() + lgt_reg
result = {
'val_nce': unsupervised_loss

}

return result
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17.4.2 Importing parts

All the bolts are modular. This means you can also arbitrarily mix and match fundamental blocks from across ap-
proaches.

Example 1: Use the VAE encoder for a GAN as a generator

from pl bolts.models.gans import GAN
from pl bolts.models.autoencoders.basic_vae import Encoder

class FancyGAN (GAN) :
def init_generator(self, img_dim):
generator = Encoder(...)

return generator

trainer = Trainer(...)
trainer.fit (FancyGAN())

Example 2: Use the contrastive task of AMDIM in CPC

from pl _bolts.models.self supervised import AMDIM, CPC_v2

default_amdim task = AMDIM() .contrastive_task
model = CPC_v2 (contrastive_task=default_amdim_task, encoder='cpc_default'")
# you might need to modify the cpc encoder depending on what you use

17.4.3 Compose new ideas

You may also be interested in creating completely new approaches that mix and match all sorts of different pieces
together

# this model is for illustration purposes, it makes no research sense but it's,
—intended to show

# that you can be as creative and expressive as you want.

class MyNewContrastiveApproach (pl.LightningModule) :

def _ init_ (self):
suoer () ._ _init_ ()

self.gan = GAN ()
self.vae = VAE ()
self.amdim = AMDIM ()
self.cpc = CPC_v2

def training step(self, batch, batch_idx):

(x, y) = batch

feat_a = self.gan.generator (x)

feat_b = self.vae.encoder (x)

unsup_loss = self.amdim(feat_a) + self.cpc(feat_b)

vae_loss self.vae._step (batch)
gan_loss = self.gan.generator_loss (x)

(continues on next page)
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return unsup_loss + vae_loss + gan_loss
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CHAPTER
EIGHTEEN

CLASSIC ML MODELS

This module implements classic machine learning models in PyTorch Lightning, including linear regression and lo-
gistic regression. Unlike other libraries that implement these models, here we use PyTorch to enable multi-GPU,
multi-TPU and half-precision training.

18.1 Linear Regression

Linear regression fits a linear model between a real-valued target variable y and one or more features X. We estimate
the regression coefficients that minimize the mean squared error between the predicted and true target values.

We formulate the linear regression model as a single-layer neural network. By default we include only one neuron in
the output layer, although you can specify the output_dim yourself.

Add either L1 or L2 regularization, or both, by specifying the regularization strength (default 0).

from pl bolts.models.regression import LinearRegression
import pytorch_lightning as pl

from pl _bolts.datamodules import SklearnDataModule
from sklearn.datasets import load_boston

X, y = load_boston (return_X_y=True)
loaders = SklearnDataModule (X, V)

model = LinearRegression (input_dim=13)
trainer = pl.Trainer()
trainer.fit (model, train_dataloader=loaders.train_dataloader (), val_

—dataloaders=loaders.val_dataloader())
trainer.test (test_dataloaders=loaders.test_dataloader())

class pl_bolts.models.regression.linear_regression.LinearRegression (input_dim,
out-
put_dim=1,
bias=True,
learn-
ing_rate=0.0001,
opti-
mizer=torch.optim.Adam,
11_strength=0.0,
12_strength=0.0,

*rkwargs)
Bases: pytorch_lightning.
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Linear regression model implementing - with optional L1/L.2 regularization $$min_{W} lI((Wx + b) - y ll_2~2

$$
Parameters

* input_dim{ (int) — number of dimensions of the input (1+)
* output_dim{ (int)— number of dimensions of the output (default=1)
* bias{ (bool) — If false, will not use $+b$
* learning_rate{ (float) — learning_rate for the optimizer
* optimizer{ (Optimizer) — the optimizer to use (default="Adam’)
* 11_strength{ (float) - L1 regularization strength (default=None)

* 12_strength{ (float)— L2 regularization strength (default=None)

18.2 Logistic Regression

Logistic regression is a linear model used for classification, i.e. when we have a categorical target variable. This
implementation supports both binary and multi-class classification.

In the binary case, we formulate the logistic regression model as a one-layer neural network with one neuron in the
output layer and a sigmoid activation function. In the multi-class case, we use a single-layer neural network but
now with k& neurons in the output, where k is the number of classes. This is also referred to as multinomial logistic
regression.

Add either L1 or L2 regularization, or both, by specifying the regularization strength (default 0).

from sklearn.datasets import load_iris

from pl _bolts.models.regression import LogisticRegression
from pl _bolts.datamodules import SklearnDataModule

import pytorch lightning as pl

# use any numpy or sklearn dataset
X, y = load_iris (return_X_y=True)
dm = SklearnDataModule (X, V)

# build model
model = LogisticRegression (input_dim=4, num_classes=3)

# fit

trainer = pl.Trainer (tpu_cores=8, precision=16)

trainer.fit (model, train_dataloader=dm.train_dataloader (), val_dataloaders=dm.val_
—dataloader())

trainer.test (test_dataloaders=dm.test_dataloader (batch_size=12))

Any input will be flattened across all dimensions except the first one (batch). This means images, sound, etc... work
out of the box.

# create dataset
dm = MNISTDataModule (num_workers=0, data_dir=tmpdir)

model = LogisticRegression (input_dim=28 x 28, num_classes=10, learning_rate=0.001)

(continues on next page)
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model.
model.
model .

prepare_data =
train_dataloade
val_dataloader

dm.prepare_data
r = dm.train_dataloader
= dm.val_dataloader

model .test_dataloader = dm.test_dataloader

trainer = pl.Trainer (max_epochs=2)
trainer.fit (model)
trainer.test (model)
# {test_acc: 0.92}

class pl_bolts.models.regression.logistic_regression.LogisticRegression (input_dim,

Bases: pytorch_lightning.
Logistic regression model

Parameters

* input_dim{ (int)— number of dimensions of the input (at least 1)

num_classes,

bias=True,

learn-

ing_rate=0.0001,

op-

ti-
mizer=torch.optim.Adam,
l1_strength=0.0,
12_strength=0.0,
*tkwargs)

* num_classes{ (int)— number of class labels (binary: 2, multi-class: >2)

* bias{ (bool) — specifies if a constant or intercept should be fitted (equivalent to

fit_intercept in sklearn)

* learning_rate{ (float) — learning_rate for the optimizer

* optimizer{ (Optimizer) — the optimizer to use (default="Adam’)

* 11_strength{ (float) - LI regularization strength (default=None)

* 12_strength{ (float)— L2 regularization strength (default=None)

18.2. Logistic Regression
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CHAPTER
NINETEEN

AUTOENCODERS

This section houses autoencoders and variational autoencoders.

19.1 Basic AE

This is the simplest autoencoder. You can use it like so

from pl bolts.models.autoencoders import AE

model = AE()
trainer = Trainer ()
trainer.fit (model)

You can override any part of this AE to build your own variation.

from pl _bolts.models.autoencoders import AE
class MyAEFlavor (AE) :
def init_encoder(self, hidden_dim, latent_dim, input_width, input_height):

encoder = YourSuperFancyEncoder (...)
return encoder

You can use the pretrained models present in bolts.

CIFAR-10 pretrained model:

from pl _bolts.models.autoencoders import AE
ae = AE (input_height=32)
print (AE.pretrained_weights_available())

ae = ae.from_pretrained('cifarlO-resnetl8")

ae.freeze ()

¢ Tensorboard for AE on CIFAR-10

Training:
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Reconstructions:

Both input and generated images are normalized versions as the training was done with such images.

class pl_bolts.models.autoencoders.AE (input_height, enc_type='"resnetl8', first_conv=False,
maxpooll=False, enc_out_dim=512, la-

tent_dim=256, Ir=0.0001, **kwargs)
Bases: pytorch_lightning.

Standard AE
Model is available pretrained on different datasets:

Example:

# not pretrained
ae = AE()

# pretrained on cifarlO

ae = AE (input_height=32) .from_pretrained('cifarlO-resnetl18")

Parameters
* input_height{ (int) — height of the images

* enc_type{ (str)— option between resnetl8 or resnet50
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* first_conv{ (bool) — use standard kernel_size 7, stride 2 at start or replace it with
kernel_size 3, stride 1 conv

* maxpooll{ (bool) - use standard maxpool to reduce spatial dim of feat by a factor of 2

* enc_out_dim{ (int) — set according to the out_channel count of encoder used (512 for
resnet18, 2048 for resnet50)

* latent_dim{ (int) — dim of latent space

* 1r{ (float) — learning rate for Adam

19.1.1 Variational Autoencoders
19.2 Basic VAE

Use the VAE like so.

from pl bolts.models.autoencoders import VAE

model = VAE ()
trainer = Trainer()
trainer.fit (model)

You can override any part of this VAE to build your own variation.

from pl _bolts.models.autoencoders import VAE
class MyVAEFlavor (VAE) :
def get_posterior(self, mu, std):
# do something other than the default
# P = self.get_distribution(self.prior, loc=torch.zeros_like (mu), scale=torch.

—ones_like(std))

return P

You can use the pretrained models present in bolts.

CIFAR-10 pretrained model:

from pl_bolts.models.autoencoders import VAE
vae = VAE (input_height=32)
print (VAE.pretrained_weights_available())

vae = vae.from_pretrained('cifarlO-resnetl8")

vae.freeze ()

¢ Tensorboard for VAE on CIFAR-10

19.2. Basic VAE 79



https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://tensorboard.dev/experiment/lIrlQ8uMSwSeM9MAf3Wxig/

Lightning-Bolts Documentation, Release 0.3.2

Training:

Reconstructions:

Both input and generated images are normalized versions as the training was done with such images.
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STL-10 pretrained model:

from pl _bolts.models.autoencoders import VAE
vae = VAE (input_height=96, first_conv=True)
print (VAE.pretrained_weights_available())

vae = vae.from_pretrained('cifarlO-resnetl8"')

vae.freeze ()

¢ Tensorboard for VAE on STL-10
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Training:
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class pl_bolts.models.autoencoders.VAE (input_height, enc_type='"resnetl8', first_conv=False,

maxpooll=False, enc_out_dim=512, ki_coeff=0.1,
latent_dim=256, lr=0.0001, **kwargs)

Bases: pytorch_lightning.

Standard VAE with Gaussian Prior and approx posterior.

Model is available pretrained on different datasets:

Example:

# not pretrained
vae = VAE ()

# pretrained on cifarlO
vae = VAE (input_height=32) .from_pretrained('cifarlO-resnetl8")

# pretrained on stl10
vae = VAE (input_height=32) .from_pretrained('stl10-resnetl8")

Parameters
* input_height{ (int) — height of the images

* enc_type{ (str)— option between resnetl8 or resnet50
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* first_conv{ (bool) — use standard kernel_size 7, stride 2 at start or replace it with
kernel_size 3, stride 1 conv

* maxpooll{ (bool) — use standard maxpool to reduce spatial dim of feat by a factor of 2

* enc_out_dim{ (int) — set according to the out_channel count of encoder used (512 for
resnet18, 2048 for resnet50)

* k1 _coeff{ (float) - coefficient for kl term of the loss
* latent_dim{ (int) — dim of latent space

* 1r{ (float) — learning rate for Adam
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CHAPTER
TWENTY

CONVOLUTIONAL ARCHITECTURES

This package lists contributed convolutional architectures.

20.1 GPT-2

class pl_bolts.models.vision.GPT2 (embed_dim, heads, layers, num_positions, vocab_size,

num_classes)
Bases: pytorch_lightning.

GPT-2 from language Models are Unsupervised Multitask Learners
Paper by: Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever
Implementation contributed by:

¢ Teddy Koker

Example:

from pl bolts.models.vision import GPT2

seq_len = 17
batch_size = 32

vocab_size = 16
x = torch.randint (0, vocab_size, (seq_len, batch_size))
model GPT2 (embed_dim=32, heads=2, layers=2, num_positions=seq_len, vocab_

—size=vocab_size, num_classes=4)
results = model (x)

forward (x, classify=False)
Expect input as shape [sequence len, batch] If classify, return classification logits
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20.2 Image GPT

class pl_bolts.models.vision.ImageGPT (embed_dim=16, heads=2, layers=2, pixels=28,
vocab_size=16, num_classes=10, classify=False,
batch_size=64, learning_rate=0.01, steps=25000,

data_dir="", num_workers=8, **kwargs)
Bases: pytorch_lightning.

Paper: Generative Pretraining from Pixels [original paper code].

Paper by: Mark Che, Alec Radford, Rewon Child, Jeff Wu, Heewoo Jun, Prafulla Dhariwal, David Luan, Ilya
Sutskever

Implementation contributed by:
» Teddy Koker
Original repo with results and more implementation details:

* https://github.com/teddykoker/image- gpt

Example Results (Photo credits: Teddy Koker):

2333333
YL
- bbb bbb
8§ 58SSs5S
"9 ¢a29949

Default arguments:
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Table 1: Argument Defaults

Argument Default iGPT-S (Chen et al.)
—embed_dim 16 512
—heads 2 8
—layers 8 24
—pixels 28 32
—vocab_size 16 512
—num_classes 10 10
—batch_size 64 128
—learning_rate 0.01 0.01
—steps 25000 1000000
Example:

import pytorch lightning as pl
from pl bolts.models.vision import ImageGPT

dm = MNISTDataModule('.")
model = ImageGPT (dm)

pl.Trainer (gpu=4) .fit (model)

As script:

cd pl_bolts/models/vision/image_gpt
python igpt_module.py —--learning_rate le-2 —--batch_size 32 --gpus 4

Parameters
* embed_dim{ (int) — the embedding dim
* heads{ (int)— number of attention heads
* layers{ (int)— number of layers
* pixels{ (int)— number of input pixels
e vocab_size{ (int) — vocab size
* num_classes{ (int)— number of classes in the input
* classify{ (bool) - true if should classify
* batch_size{ (int) — the batch size
* learning_rate{ (float) - learning rate
* steps{ (int)— number of steps for cosine annealing
* data_dir{ (str) - where to store data

* num_workers{ (int)— num_data workers
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20.3 Pixel CNN

class pl_bolts.models.vision.PixelCNN (input_channels, hidden_channels=256,

num_blocks=5)
Bases: torch.nn.

Implementation of Pixel CNN.

Paper authors: Aaron van den Oord, Nal Kalchbrenner, Oriol Vinyals, Lasse Espeholt, Alex Graves, Koray
Kavukcuoglu

Implemented by:
» William Falcon

Example:

>>> from pl _bolts.models.vision import PixelCNN
>>> import torch

>>> model = PixelCNN (input_channels=3)
>>> x = torch.rand (5, 3, 64, 64)
>>> out = model (x)

>>> out.shape
torch.Size ([5, 3, 64, 64])

20.4 UNet

class pl_bolts.models.vision.UNet (num_classes, input_channels=3, num_layers=5, fea-

tures_start=64, bilinear=False)
Bases: torch.nn.

Paper: U-Net: Convolutional Networks for Biomedical Image Segmentation
Paper authors: Olaf Ronneberger, Philipp Fischer, Thomas Brox
Implemented by:

¢ Annika Brundyn

¢ Akshay Kulkarni

Parameters
* num_classes{ (int)— Number of output classes required
* input_channels{ (int)— Number of channels in input images (default 3)
* num_layers{ (int)— Number of layers in each side of U-net (default 5)
* features_start{ (int)— Number of features in first layer (default 64)

* bilinear{ (bool) — Whether to use bilinear interpolation or transposed convolutions
(default) for upsampling.
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20.5 Semantic Segmentation

Model template to use for semantic segmentation tasks. The model uses a UNet architecture by default. Override any
part of this model to build your own variation.

from pl bolts.models.vision import SemSegment
from pl bolts.datamodules import KittiDataModule
import pytorch lightning as pl

dm = KittiDataModule ('path/to/kitt/dataset/', batch_size=4)
model = SemSegment (datamodule=dm)

trainer = pl.Trainer ()

trainer.fit (model)

class pl_bolts.models.vision.SemSegment (Ir=0.01, num_classes=19, num_layers=5, fea-

tures_start=64, bilinear=False)
Bases: pytorch_lightning.

Basic model for semantic segmentation. Uses UNet architecture by default.

The default parameters in this model are for the KITTI dataset. Note, if you’d like to use this model as is, you
will first need to download the KITTI dataset yourself. You can download the dataset here.

Implemented by:

¢ Annika Brundyn

Parameters
* num_layers{ (int)— number of layers in each side of U-net (default 5)
* features_start{ (int)— number of features in first layer (default 64)

* bilinear{ (bool)— whether to use bilinear interpolation (True) or transposed convolu-
tions (default) for upsampling.

* 1r{ (float) — learning (default 0.01)
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CHAPTER
TWENTYONE

GANS

Collection of Generative Adversarial Networks

21.1 Basic GAN

This is a vanilla GAN. This model can work on any dataset size but results are shown for MNIST. Replace the encoder,
decoder or any part of the training loop to build a new method, or simply finetune on your data.

Implemented by:
* William Falcon

Example outputs:
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Loss curves:
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from pl _bolts.models.gans import GAN
gan = GAN()
trainer = Trainer ()
trainer.fit (gan)
class pl_bolts.models.gans.GAN (input_channels, input_height, input_width, latent dim=32,
learning_rate=0.0002, **kwargs)
Bases: pytorch_lightning.
Vanilla GAN implementation.
Example:
from pl bolts.models.gans import GAN

m = GAN ()
Trainer (gpus=2) .fit (m)

Example CLI:

'imagenet2012'

# mnist
basic_gan_module.py --gpus 1
# imagenet
python basic_gan_module.py —--gpus 1 --dataset
——-batch_size 256 —--learning_rate 0.0001

python
--data_dir /path/to/imagenet/folder/ —--meta_dir ~/path/to/meta/bin/folder

Parameters
input_height{ (int) —image height

input_width{ (int) - image width
latent_dim{ (int) —emb dim for encoder

learning_ rate{ (float) — the learning rate

* input_channels{ (int)— number of channels of an image

Chapter 21
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forward (z)
Generates an image given input noise z

Example:

z = torch.rand (batch_size, latent_dim)
gan = GAN.load_from_checkpoint (PATH)
img = gan(z)

DCGAN implementation from the paper Unsupervised Representation Learning with Deep Convolutional Generative
Adversarial Networks. The implementation is based on the version from PyTorch’s examples.

Implemented by:
* Christoph Clement
Example MNIST outputs:
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MNIST Loss curves:
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disc_epoch
tag: loss/disc_spoch

gen_epoch
tag: loss/gen_epoch

class pl_bolts.models.gans.DCGAN (betal=0.5, feature_maps_gen=64, feature_maps_disc=64,
image_channels=1, latent_dim=100, learning_rate=0.0002,

**kwargs)
Bases: pytorch_lightning.

DCGAN implementation.

Example:

from pl_bolts.models.gans import DCGAN

m = DCGAN ()
Trainer (gpus=2) .fit (m)

Example CLI:

# mnist
python dcgan_module.py ——gpus 1

# cifarlO
python dcgan_module.py ——gpus 1 —-dataset cifarl0 --image_channels 3

Parameters
* betal{ (float)— Betal value for Adam optimizer
* feature_maps_gen{ (int)— Number of feature maps to use for the generator
* feature_maps_disc{ (int)— Number of feature maps to use for the discriminator
* image_channels{ (int)— Number of channels of the images from the dataset
* latent_dim{ (int) — Dimension of the latent space
* learning_rate{ (float)— Learning rate

forward (noise)
Generates an image given input noise

Example:
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noise = torch.rand(batch_size, latent_dim)

gan
img

= GAN.load_from_checkpoint (PATH)
= gan (noise)

Return type Tensor

94
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CHAPTER
TWENTYTWO

REINFORCEMENT LEARNING

This module is a collection of common RL approaches implemented in Lightning.

22.1 Module authors

Contributions by: Donal Byrne

DQN

Double DQN

Dueling DQN

Noisy DQN

NStep DQN

Prioritized Experience Replay DQN
Reinforce

Vanilla Policy Gradient

Note:

RL models currently only support CPU and single GPU training with distributed_backend=dp. Full GPU

support will be added in later updates.

22.2 DQN Models

The following models are based on DQN. DQN uses value based learning where it is deciding what action to take
based on the model’s current learned value (V), or the state action value (Q) of the current state. These values are
defined as the discounted total reward of the agents state or state action pair.
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22.2.1 Deep-Q-Network (DQN)

DQN model introduced in Playing Atari with Deep Reinforcement Learning. Paper authors: Volodymyr Mnih, Koray
Kavukcuoglu, David Silver, Alex Graves, loannis Antonoglou, Daan Wierstra, Martin Riedmiller.

Original implementation by: Donal Byrne

The DQN was introduced in Playing Atari with Deep Reinforcement Learning by researchers at DeepMind. This took
the concept of tabular Q learning and scaled it to much larger problems by approximating the Q function using a deep
neural network.

The goal behind DQN was to take the simple control method of Q learning and scale it up in order to solve complicated
tasks. As well as this, the method needed to be stable. The DQN solves these issues with the following additions.

Approximated Q Function

Storing Q values in a table works well in theory, but is completely unscalable. Instead, the authors approximate the Q
function using a deep neural network. This allows the DQN to be used for much more complicated tasks

Replay Buffer

Similar to supervised learning, the DQN learns on randomly sampled batches of previous data stored in an Experience
Replay Buffer. The ‘target’ is calculated using the Bellman equation

Q(s,0) < —(r + ymax Q(s', "))’
a’€A
and then we optimize using SGD just like a standard supervised learning problem.

L=(Q(s,a) = (r +ymax Q(s',a))?

DQN Results
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Example:

from pl bolts.models.rl import DQN
dgn = DQN ("PongNoFrameskip-v4")
trainer = Trainer()

trainer.fit (dgn)

class pl_bolts.models.rl.dgn_model.DQON (env, eps_start=1.0, eps_end=0.02,
eps_last_frame=150000, sync_rate=1000,
gamma=0.99, learning_rate=0.0001,
batch_size=32, replay_size=100000,
warm_start_size=10000, avg_reward_len=100,
min_episode_reward=- 21, seed=123,

batches_per_epoch=1000, n_steps=1, **kwargs)
Bases: pytorch_lightning.
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Basic DQN Model

PyTorch Lightning implementation of DQN Paper authors: Volodymyr Mnih, Koray Kavukcuoglu, David Silver,

Alex Graves,

Ioannis Antonoglou, Daan Wierstra, Martin Riedmiller. Model implemented by:

* Donal Byrne <https://github.com/djbyrne>

Example

>>> from pl _bolts.models.rl.dgn_model import DQON

>>> model

= DQN ("PongNoFrameskip-v4")

Train:

trainer =

Trainer ()

trainer.fit (model)

Note:

This example is based on: https://github.com/PacktPublishing/
Deep-Reinforcement-Learning-Hands-On-Second-Edition/blob/master/Chapter06/02_dqn_pong.py

Note: Currently only supports CPU and single GPU training with distributed_backend=dp

Parameters

env{ (str)— gym environment tag
eps_start{ (float) — starting value of epsilon for the epsilon-greedy exploration
eps_end{ (float) — final value of epsilon for the epsilon-greedy exploration

eps_last_frame{ (int) — the final frame in for the decrease of epsilon. At this frame
espilon = eps_end

sync_rate{ (int)—the number of iterations between syncing up the target network with
the train network

gamma{ (float) — discount factor

learning_rate{ (float) — learning rate

batch_size{ (int) —size of minibatch pulled from the Datal.oader
replay_size{ (int) — total capacity of the replay buffer

warm_start_size{ (int) — how many random steps through the environment to be
carried out at the start of training to fill the buffer with a starting point

avg_reward_len{ (int) — how many episodes to take into account when calculating
the avg reward

min_episode_reward{ (int) - the minimum score that can be achieved in an episode.
Used for filling the avg buffer before training begins

seedf (int) - seed value for all RNG used
batches_per_epoch{ (int)—number of batches per epoch

n_steps{ (int) — size of n step look ahead

22.2. DQN Models
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static add_model_specific_args (arg_parser)
Adds arguments for DQN model

Note: These params are fine tuned for Pong env.

Parameters arg_parser{ (ArgumentParser) — parent parser
Return type ArgumentParser

build networks ()
Initializes the DQN train and target networks

Return type None

configure_optimizers ()
Initialize Adam optimizer

Return type List[Optimizer]

forward (x)
Passes in a state x through the network and gets the q_values of each action as an output

Parameters x{ (Tensor) — environment state
Return type Tensor
Returns q values

static make_environment (env_name, seed=None)
Initialise gym environment

Parameters

* env_name{ (str)— environment name or tag

* seed{ (Optionall[int])— value to seed the environment RNG for reproducibility
Return type object
Returns gym environment

populate (warm_start)
Populates the buffer with initial experience

Return type None

run_n_episodes (env, n_epsiodes=1, epsilon=1.0)
Carries out N episodes of the environment with the current agent

Parameters
¢ env{ — environment to use, either train environment or test environment
* n_epsiodes{ (int)— number of episodes to run
* epsilon{ (float) — epsilon value for DQN agent

Return type List[int]

test_dataloader ()
Get test loader

Return type DatalLoader
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test_epoch_end (outputs)
Log the avg of the test results

Return type Dict[str, Tensor]

test_step (*args, **kwargs)
Evaluate the agent for 10 episodes

Return type Dict[str, Tensor]

train_batch ()
Contains the logic for generating a new batch of data to be passed to the DatalLoader

Return type Tuple[Tensor, Tensor, Tensor, Tensor, Tensor]
Returns yields a Experience tuple containing the state, action, reward, done and next_state.

train_dataloader ()
Get train loader

Return type Datal.oader

training_step (batch, _)
Carries out a single step through the environment to update the replay buffer. Then calculates loss based
on the minibatch recieved

Parameters
* batch{ (Tuple[Tensor, Tensor]) — current mini batch of replay data
e 7 —batch number, not used

Return type OrderedDict

Returns Training loss and log metrics

22.2.2 Double DQN

Double DQN model introduced in Deep Reinforcement Learning with Double Q-learning Paper authors: Hado van
Hasselt, Arthur Guez, David Silver

Original implementation by: Donal Byrne

The original DQN tends to overestimate Q values during the Bellman update, leading to instability and is harmful to
training. This is due to the max operation in the Bellman equation.

We are constantly taking the max of our agents estimates during our update. This may seem reasonable, if we could
trust these estimates. However during the early stages of training, the estimates for these values will be off center and
can lead to instability in training until our estimates become more reliable

The Double DQN fixes this overestimation by choosing actions for the next state using the main trained network but
uses the values of these actions from the more stable target network. So we are still going to take the greedy action,
but the value will be less “optimisitc” because it is chosen by the target network.

DQN expected return

Q(st7 at) =r+yx* Hclga/X(St+1, a)

Double DQN expected return

Q(st,at) = ry + v+ max Q'(Sy1, arg man(S,H_l, a))
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Double DQN Results

Double DQN: Pong
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Example:

from pl _bolts.models.rl import DoubleDQN
ddgn = DoubleDOQON ("PongNoFrameskip-v4")
trainer = Trainer ()

trainer.fit (ddgn)

class pl_bolts.models.rl.double_dgn_model.DoubleDOQON (env, eps_start=1.0,
eps_end=0.02,
eps_last_frame=150000,
sync_rate=1000, gamma=0.99,
learning_rate=0.0001,
batch_size=32, re-
play_size=100000,
warm_start_size=10000,
avg_reward_len=100,
min_episode_reward=-
21, seed=123,
batches_per_epoch=1000,

n_steps=1, **kwargs)
Bases: pytorch_lightning.

Double Deep Q-network (DDQN) PyTorch Lightning implementation of Double DQN
Paper authors: Hado van Hasselt, Arthur Guez, David Silver

Model implemented by:
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e Donal Byrne <https://github.com/djbyrne>

Example

>>> from pl_bolts.models.rl.double_dgn model import DoubleDQN

>>> model = DoubleDQN ("PongNoFrameskip-v4")

Train:

trainer = Trainer ()
trainer.fit (model)

Note: This example is based on https://github.com/PacktPublishing/
Deep-Reinforcement-Learning-Hands-On-Second-Edition/blob/master/Chapter08/03_dqn_double.py

Note: Currently only supports CPU and single GPU training with distributed_backend=dp

Parameters
* env{ (str)— gym environment tag
* eps_start{ (float) — starting value of epsilon for the epsilon-greedy exploration
* eps_end{ (float) — final value of epsilon for the epsilon-greedy exploration

* eps_last_frame{ (int) — the final frame in for the decrease of epsilon. At this frame
espilon = eps_end

* sync_rate{ (int) - the number of iterations between syncing up the target network with
the train network

* gammay (f loat) — discount factor

* learning_ rate{ (float) —learning rate

* batch_size{ (int) - size of minibatch pulled from the Datal.oader
* replay_size{ (int) — total capacity of the replay buffer

* warm_start_size{ (int) — how many random steps through the environment to be
carried out at the start of training to fill the buffer with a starting point

* avg_reward_len{ (int) — how many episodes to take into account when calculating
the avg reward

* min_episode_reward{ (int) - the minimum score that can be achieved in an episode.
Used for filling the avg buffer before training begins

e seedf (int) — seed value for all RNG used
* batches_per_epoch{ (int)— number of batches per epoch
* n_steps{ (int) — size of n step look ahead

training_step (batch, _)
Carries out a single step through the environment to update the replay buffer. Then calculates loss based
on the minibatch recieved
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Parameters
* batch{ (Tuple[Tensor, Tensor]) — current mini batch of replay data
e ¢ —batch number, not used

Return type OrderedDict

Returns Training loss and log metrics

22.2.3 Dueling DQN

Dueling DQN model introduced in Dueling Network Architectures for Deep Reinforcement Learning Paper authors:
Ziyu Wang, Tom Schaul, Matteo Hessel, Hado van Hasselt, Marc Lanctot, Nando de Freitas

Original implementation by: Donal Byrne

The Q value that we are trying to approximate can be divided into two parts, the value state V(s) and the ‘advantage’
of actions in that state A(s, a). Instead of having one full network estimate the entire Q value, Dueling DQN uses two
estimator heads in order to separate the estimation of the two parts.

The value is the same as in value iteration. It is the discounted expected reward achieved from state s. Think of the
value as the ‘base reward’ from being in state s.

The advantage tells us how much ‘extra’ reward we get from taking action a while in state s. The advantage bridges
the gap between Q(s, a) and V(s) as Q(s, a) = V(s) + A(s, a).

In the paper Dueling Network Architectures for Deep Reinforcement Learning <https://arxiv.org/abs/1511.06581> the
network uses two heads, one outputs the value state and the other outputs the advantage. This leads to better training
stability, faster convergence and overall better results. The V head outputs a single scalar (the state value), while the
advantage head outputs a tensor equal to the size of the action space, containing an advantage value for each action in
state s.

Changing the network architecture is not enough, we also need to ensure that the advantage mean is 0. This is done by
subtracting the mean advantage from the Q value. This essentially pulls the mean advantage to O.

Q(s,a) =V (s)+ A(s,a) — 1/N % Z(A(s, k)

k

Dueling DQN Benefits

* Ability to efficiently learn the state value function. In the dueling network, every Q update also updates the value
stream, where as in DQN only the value of the chosen action is updated. This provides a better approximation
of the values

* The differences between total Q values for a given state are quite small in relation to the magnitude of Q. The
difference in the Q values between the best action and the second best action can be very small, while the average
state value can be much larger. The differences in scale can introduce noise, which may lead to the greedy policy
switching the priority of these actions. The seperate estimators for state value and advantage makes the Dueling
DQN robust to this type of scenario
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Dueling DQN Results

The results below a noticeable improvement from the original DQN network.

Dueling DQN baseline: Pong

Similar to the results of the DQN baseline, the agent has a period where the number of steps per episodes increase as
it begins to hold its own against the heuristic oppoent, but then the steps per episode quickly begins to drop as it gets

better and starts to beat its opponent faster and faster. There is a noticable point at step ~250k where the agent goes
from losing to winning.

As you can see by the total rewards, the dueling network’s training progression is very stable and continues to trend
upward until it finally plateus.

episode_steps total_reward train_loss
+ 25
3e+3 0.012

2e+3

0 100k 200k 300k 400k 500k 0 100k 200k 300k 400k 500K 0 100k 200k 300k 400k 500k
DQN vs Dueling DQN: Pong

In comparison to the base DQN, we see that the Dueling network’s training is much more stable and is able to reach a
score in the high teens faster than the DQN agent. Even though the Dueling network is more stable and out performs
DOQN early in training, by the end of training the two networks end up at the same point.

This could very well be due to the simplicity of the Pong environment.
* Orange: DQN
* Red: Dueling DQN

episode_steps 7
total_reward train_loss

100k 200k 300k 400k 500k
0 100k 200k 300k 400k 500k

Example:

from pl _bolts.models.rl import DuelingDQN
dueling_dagn DuelingDQN ("PongNoFrameskip-v4")
trainer Trainer ()

trainer.fit (dueling_dgn)
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class pl_bolts.models.rl.dueling_dgn_model .DuelingDQN (env, eps_start=1.0,
eps_end=0.02,
eps_last_frame=150000,
sync_rate=1000,

gamma=0.99, learn-
ing_rate=0.0001,
batch_size=32, re-

play_size=100000,
warm_start_size=10000,
avg_reward_len=100,
min_episode_reward=-
21, seed=123,
batches_per_epoch=1000,
n_steps=1, **kwargs)

Bases: pytorch_lightning.

PyTorch Lightning implementation of Dueling DQN
Paper authors: Ziyu Wang, Tom Schaul, Matteo Hessel, Hado van Hasselt, Marc Lanctot, Nando de Freitas
Model implemented by:

e Donal Byrne <https://github.com/djbyrne>

Example

>>> from pl_bolts.models.rl.dueling dgn _model import DuelingDQN

>>> model = DuelingDON ("PongNoFrameskip-v4")

Train:

trainer = Trainer ()
trainer.fit (model)

Note: Currently only supports CPU and single GPU training with distributed_backend=dp

Parameters
* env{ (str)— gym environment tag
* eps_start{ (float) — starting value of epsilon for the epsilon-greedy exploration
* eps_endY (f1loat) — final value of epsilon for the epsilon-greedy exploration

* eps_last_frame{ (int) — the final frame in for the decrease of epsilon. At this frame
espilon = eps_end

* sync_rate{ (int)-the number of iterations between syncing up the target network with
the train network

* gammay (f loat) — discount factor
* learning_rate{ (float) —learning rate
* batch_size{ (int) - size of minibatch pulled from the Datal.oader

* replay_size{ (int) — total capacity of the replay buffer
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* warm_start_size{ (int) — how many random steps through the environment to be
carried out at the start of training to fill the buffer with a starting point

* avg_reward len{ (int) — how many episodes to take into account when calculating
the avg reward

* min_episode_reward{ (int) - the minimum score that can be achieved in an episode.
Used for filling the avg buffer before training begins

e seedf (int) — seed value for all RNG used
* batches_per_epoch{ (int) — number of batches per epoch
* n_steps{ (int) —size of n step look ahead

build networks ()
Initializes the Dueling DQN train and target networks

Return type None

22.2.4 Noisy DQN

Noisy DQN model introduced in Noisy Networks for Exploration Paper authors: Meire Fortunato, Mohammad Ghesh-
laghi Azar, Bilal Piot, Jacob Menick, Ian Osband, Alex Graves, Vlad Mnih, Remi Munos, Demis Hassabis, Olivier
Pietquin, Charles Blundell, Shane Legg

Original implementation by: Donal Byrne

Up until now the DQN agent uses a seperate exploration policy, generally epsilon-greedy where start and end values
are set for its exploration. Noisy Networks For Exploration <https://arxiv.org/abs/1706.10295> introduces a new
exploration strategy by adding noise parameters to the weights of the fully connect layers which get updated during
backpropagation of the network. The noise parameters drive the exploration of the network instead of simply taking
random actions more frequently at the start of training and less frequently towards the end. The of authors of propose
two ways of doing this.

During the optimization step a new set of noisy parameters are sampled. During training the agent acts according to
the fixed set of parameters. At the next optimization step, the parameters are updated with a new sample. This ensures
the agent always acts based on the parameters that are drawn from the current noise distribution.

The authors propose two methods of injecting noise to the network.

1) Independent Gaussian Noise: This injects noise per weight. For each weight a random value is taken from the
distribution. Noise parameters are stored inside the layer and are updated during backpropagation. The output
of the layer is calculated as normal.

2) Factorized Gaussian Noise: This injects nosier per input/ouput. In order to minimize the number of random
values this method stores two random vectors, one with the size of the input and the other with the size of the
output. Using these two vectors, a random matrix is generated for the layer by calculating the outer products of
the vector
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Noisy DQN Benefits
* Improved exploration function. Instead of just performing completely random actions, we add decreasing
amount of noise and uncertainty to our policy allowing to explore while still utilising its policy.

¢ The fact that this method is automatically tuned means that we do not have to tune hyper parameters for epsilon-
greedy!

Note: For now I have just implemented the Independant Gaussian as it has been reported there isn’t much difference
in results for these benchmark environments.

In order to update the basic DQN to a Noisy DQN we need to do the following

Noisy DQN Results

The results below improved stability and faster performance growth.
Noisy DQN baseline: Pong

Similar to the other improvements, the average score of the agent reaches positive numbers around the 250k mark and
steadily increases till convergence.

isode_steps total_reward
episode_steps = train_loss
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DQN vs Noisy DQN: Pong

In comparison to the base DQN, the Noisy DQN is more stable and is able to converge on an optimal policy much
faster than the original. It seems that the replacement of the epsilon-greedy strategy with network noise provides a
better form of exploration.

e Orange: DQN
* Red: Noisy DQN

episode_steps total_reward train_loss
4e+3 25 0.016
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Example:
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from pl _bolts.models.rl import NoisyDQN
noisy_dgn = NoisyDQN ("PongNoFrameskip-v4")
trainer = Trainer|()

trainer.fit (noisy_dagn)

class pl_bolts.models.rl.noisy_dgn_model .NoisyDON (env, eps_start=1.0, eps_end=0.02,
eps_last_frame=150000,
sync_rate=1000, gamma=0.99,
learning_rate=0.0001,
batch_size=32, re-
play_size=100000,
warm_start_size=10000,
avg_reward_len=100,
min_episode_reward=-
21, seed=123,
batches_per_epoch=1000,
n_steps=1, **kwargs)

Bases: pytorch_lightning.

PyTorch Lightning implementation of Noisy DON

Paper authors: Meire Fortunato, Mohammad Gheshlaghi Azar, Bilal Piot, Jacob Menick, Ian Osband, Alex
Graves, Vlad Mnih, Remi Munos, Demis Hassabis, Olivier Pietquin, Charles Blundell, Shane Legg

Model implemented by:
e Donal Byrne <https://github.com/djbyrne>

Example

>>> from pl_bolts.models.rl.noisy_dgn model import NoisyDQN

>>> model = NoisyDQN ("PongNoFrameskip-v4")

Train:

trainer = Trainer ()
trainer.fit (model)

Note: Currently only supports CPU and single GPU training with distributed_backend=dp

Parameters
* env{ (str)— gym environment tag
* eps_start (float) — starting value of epsilon for the epsilon-greedy exploration
* eps_endY (f1loat) — final value of epsilon for the epsilon-greedy exploration

* eps_last_frame{ (int) - the final frame in for the decrease of epsilon. At this frame
espilon = eps_end

* sync_rate{ (int)—the number of iterations between syncing up the target network with
the train network

* gammay (float) — discount factor
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* learning_rate{ (float) —learning rate
* batch_size{ (int) — size of minibatch pulled from the Datal.oader
* replay size{ (int) — total capacity of the replay buffer

* warm_start_size{ (int) — how many random steps through the environment to be
carried out at the start of training to fill the buffer with a starting point

* avg_reward_len{ (int) — how many episodes to take into account when calculating
the avg reward

* min_episode_reward{ (int) - the minimum score that can be achieved in an episode.
Used for filling the avg buffer before training begins

¢ seedf (int) — seed value for all RNG used
* batches_per_epoch (int)— number of batches per epoch
* n_steps{ (int) —size of n step look ahead

build networks ()
Initializes the Noisy DQN train and target networks

Return type None

on_train_start ()
Set the agents epsilon to 0 as the exploration comes from the network

Return type None

train_batch ()
Contains the logic for generating a new batch of data to be passed to the DatalL.oader. This is the same
function as the standard DQN except that we dont update epsilon as it is always 0. The exploration comes
from the noisy network.

Return type Tuple[Tensor, Tensor, Tensor, Tensor, Tensor]

Returns yields a Experience tuple containing the state, action, reward, done and next_state.

22.2.5 N-Step DQN

N-Step DQN model introduced in Learning to Predict by the Methods of Temporal Differences Paper authors: Richard
S. Sutton

Original implementation by: Donal Byrne

N Step DQN was introduced in Learning to Predict by the Methods of Temporal Differences. This method improves
upon the original DQN by updating our Q values with the expected reward from multiple steps in the future as opposed
to the expected reward from the immediate next state. When getting the Q values for a state action pair using a single
step which looks like this

Q(st,a:) =1 + W’m(?XQ(StJrl,atJrl)

but because the Q function is recursive we can continue to roll this out into multiple steps, looking at the expected
return for each step into the future.

Q(st,a¢) = e +97req1 + 72 H}l{iX Q(st42,a")

The above example shows a 2-Step look ahead, but this could be rolled out to the end of the episode, which is just
Monte Carlo learning. Although we could just do a monte carlo update and look forward to the end of the episode,
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it wouldn’t be a good idea. Every time we take another step into the future, we are basing our approximation off our
current policy. For a large portion of training, our policy is going to be less than optimal. For example, at the start of
training, our policy will be in a state of high exploration, and will be little better than random.

Note: For each rollout step you must scale the discount factor accordingly by the number of steps. As you can see
from the equation above, the second gamma value is to the power of 2. If we rolled this out one step further, we would
use gamma to the power of 3 and so.

So if we are aproximating future rewards off a bad policy, chances are those approximations are going to be pretty bad
and every time we unroll our update equation, the worse it will get. The fact that we are using an off policy method
like DQN with a large replay buffer will make this even worse, as there is a high chance that we will be training on
experiences using an old policy that was worse than our current policy.

So we need to strike a balance between looking far enough ahead to improve the convergence of our agent, but not so
far that are updates become unstable. In general, small values of 2-4 work best.

N-Step Benefits

* Multi-Step learning is capable of learning faster than typical 1 step learning methods.

¢ Note that this method introduces a new hyperparameter n. Although n=4 is generally a good starting point and
provides good results across the board.

N-Step Results

As expected, the N-Step DQN converges much faster than the standard DQN, however it also adds more instability to
the loss of the agent. This can be seen in the following experiments.

N-Step DQN: Pong

The N-Step DQN shows the greatest increase in performance with respect to the other DQN variations. After less than
150k steps the agent begins to consistently win games and achieves the top score after ~170K steps. This is reflected
in the sharp peak of the total episode steps and of course, the total episode rewards.

episode_steps total_reward train_loss
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DQN vs N-Step DQN: Pong

This improvement is shown in stark contrast to the base DQN, which only begins to win games after 250k steps and
requires over twice as many steps (450k) as the N-Step agent to achieve the high score of 21. One important thing to
notice is the large increase in the loss of the N-Step agent. This is expected as the agent is building its expected reward
off approximations of the future states. The large the size of N, the greater the instability. Previous literature, listed
below, shows the best results for the Pong environment with an N step between 3-5. For these experiments I opted
with an N step of 4.
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episode_steps total_reward train_loss

Example:

from pl _bolts.models.rl import DQN

n_step_dgn = DQN ("PongNoFrameskip-v4", n_steps=4)
trainer = Trainer()

trainer.fit (n_step_dagn)

22.2.6 Prioritized Experience Replay DQN

Double DQN model introduced in Prioritized Experience Replay Paper authors: Tom Schaul, John Quan, Ioannis
Antonoglou, David Silver

Original implementation by: Donal Byrne

The standard DQN uses a buffer to break up the correlation between experiences and uniform random samples for
each batch. Instead of just randomly sampling from the buffer prioritized experience replay (PER) prioritizes these
samples based on training loss. This concept was introduced in the paper Prioritized Experience Replay

Essentially we want to train more on the samples that sunrise the agent.

The priority of each sample is defined below where
P() = P2/ P
k

where pi is the priority of the ith sample in the buffer and is the number that shows how much emphasis we give to
the priority. If =0, our sampling will become uniform as in the classic DQN method. Larger values for put more
stress on samples with higher priority

Its important that new samples are set to the highest priority so that they are sampled soon. This however introduces
bias to new samples in our dataset. In order to compensate for this bias, the value of the weight is defined as

w; = (N.P(i))™"

Where beta is a hyper parameter between 0-1. When beta is 1 the bias is fully compensated. However authors noted
that in practice it is better to start beta with a small value near 0 and slowly increase it to 1.

PER Benefits
* The benefits of this technique are that the agent sees more samples that it struggled with and gets more chances
to improve upon it.
Memory Buffer

First step is to replace the standard experience replay buffer with the prioritized experience replay buffer. This is pretty
large (100+ lines) so I wont go through it here. There are two buffers implemented. The first is a naive list based buffer
found in memory.PERBuffer and the second is more efficient buffer using a Sum Tree datastructure.
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The list based version is simpler, but has a sample complexity of O(N). The Sum Tree in comparison has a complexity
of O(1) for sampling and O(logN) for updating priorities.

Update loss function

The next thing we do is to use the sample weights that we get from PER. Add the following code to the end of the loss
function. This applies the weights of our sample to the batch loss. Then we return the mean loss and weighted loss for
each datum, with the addition of a small epsilon value.

PER Results

The results below show improved stability and faster performance growth.

PER DQN: Pong

Similar to the other improvements, we see that PER improves the stability of the agents training and shows to con-
verged on an optimal policy faster.

episode_steps total_reward train_loss
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DQN vs PER DQN: Pong

In comparison to the base DQN, the PER DQN does show improved stability and performance. As expected, the loss
of the PER DQN is siginificantly lower. This is the main objective of PER by focusing on experiences with high loss.

It is important to note that loss is not the only metric we should be looking at. Although the agent may have very low
loss during training, it may still perform poorly due to lack of exploration.

episode_steps total_reward train_loss
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* Orange: DQN
* Pink: PER DQN

Example:

from pl bolts.models.rl import PERDQN
per_dgn = PERDQN ("PongNoFrameskip-v4"™)
trainer = Trainer ()
trainer.fit (per_dgn)
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class pl_bolts.models.rl.per_dgn_model.PERDQN (env, eps_start=1.0, eps_end=0.02,
eps_last_frame=150000,
sync_rate=1000, gamma=0.99,
learning_rate=0.0001,
batch_size=32, replay_size=100000,
warm_start_size=10000,
avg_reward_len=100,
min_episode_reward=- 21, seed=123,
batches_per_epoch=1000, n_steps=1,
**kwargs)

Bases: pytorch_lightning.

PyTorch Lightning implementation of DQN With Prioritized Experience Replay
Paper authors: Tom Schaul, John Quan, Ioannis Antonoglou, David Silver
Model implemented by:

e Donal Byrne <https://github.com/djbyrne>

Example

>>> from pl _bolts.models.rl.per_dqn model import PERDQN

>>> model = PERDQN ("PongNoFrameskip-v4")

Train:

trainer = Trainer ()
trainer.fit (model)

Note:

This example is based on: https://github.com/PacktPublishing/Deep-Reinforcement-Learning-Hands-On-Second-Edition/
blob/master/Chapter08/05_dqn_prio_replay.py

Note: Currently only supports CPU and single GPU training with distributed_backend=dp

Parameters
* env{ (str)- gym environment tag
* eps_start{ (float) — starting value of epsilon for the epsilon-greedy exploration
* eps_endf (f1loat) - final value of epsilon for the epsilon-greedy exploration

* eps_last_frame{ (int) — the final frame in for the decrease of epsilon. At this frame
espilon = eps_end

* sync_rate{ (int)—the number of iterations between syncing up the target network with
the train network

* gamma{ (float) — discount factor
* learning_rate{ (float) - learning rate

* batch_size{ (int) — size of minibatch pulled from the Datal.oader
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* replay_size{ (int) — total capacity of the replay buffer

* warm_start_size{ (int) — how many random steps through the environment to be
carried out at the start of training to fill the buffer with a starting point

* avg_reward_len{ (int) — how many episodes to take into account when calculating
the avg reward

* min_episode_reward{ (int) - the minimum score that can be achieved in an episode.
Used for filling the avg buffer before training begins

e seedf (int) - seed value for all RNG used
* batches_per_epoch{ (int)— number of batches per epoch
* n_steps{ (int) — size of n step look ahead

train_batch()
Contains the logic for generating a new batch of data to be passed to the Dataloader

Return type Tuple[Tensor, Tensor, Tensor, Tensor, Tensor]
Returns yields a Experience tuple containing the state, action, reward, done and next_state.

training_step (batch, _)
Carries out a single step through the environment to update the replay buffer. Then calculates loss based
on the minibatch recieved

Parameters
* batch{ — current mini batch of replay data
¢ 7 —batch number, not used

Return type OrderedDict

Returns Training loss and log metrics

22.3 Policy Gradient Models

The following models are based on Policy Gradients. Unlike the Q learning models shown before, Policy based models
do not try and learn the specifc values of state or state action pairs. Instead it cuts out the middle man and directly
learns the policy distribution. In Policy Gradient models we update our network parameters in the direction suggested
by our policy gradient in order to find a policy that produces the highest results.

Policy Gradient Key Points:
* QOutputs a distribution of actions instead of discrete Q values
* Optimizes the policy directly, instead of indirectly through the optimization of Q values

* The policy distribution of actions allows the model to handle more complex action spaces, such as contin-
uous actions

» The policy distribution introduces stochasticity, providing natural exploration to the model

* The policy distribution provides a more stable update as a change in weights will only change the total
distribution slightly, as opposed to changing weights based on the Q value of state S will change all Q
values with similar states.

* Policy gradients tend to converge faste, however they are not as sample efficient and generally require
more interactions with the environment.
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22.3.1 REINFORCE

REINFORCE model introduced in Policy Gradient Methods For Reinforcement Learning With Function Approxima-
tion Paper authors: Richard S. Sutton, David McAllester, Satinder Singh, Yishay Mansour

Original implementation by: Donal Byrne

REINFORCE is one of the simplest forms of the Policy Gradient method of RL. This method uses a Monte Carlo
rollout, where its steps through entire episodes of the environment to build up trajectories computing the total rewards.
The algorithm is as follows:

1. Initialize our network.
2. Play N full episodes saving the transitions through the environment.

3. For every step ¢ in each episode k we calculate the discounted reward of the subsequent steps.
Qi = Z yir;
i=0
4. Calculate the loss for all transitions.
L==> Qilog(m(Sk. Ars))
kit

5. Perform SGD on the loss and repeat.

What this loss function is saying is simply that we want to take the log probability of action A at state S given our
policy (network output). This is then scaled by the discounted reward that we calculated in the previous step. We then
take the negative of our sum. This is because the loss is minimized during SGD, but we want to maximize our policy.

Note: The current implementation does not actually wait for the batch episodes the complete every time as we pass
in a fixed batch size. For the time being we simply use a large batch size to accomodate this. This approach still works
well for simple tasks as it still manages to get an accurate Q value by using a large batch size, but it is not as accurate
or completely correct. This will be updated in a later version.

REINFORCE Benefits

» Simple and straightforward

» Computationally more efficient for simple tasks such as Cartpole than the Value Based methods.

REINFORCE Results

Hyperparameters:
* Batch Size: 800
* Learning Rate: 0.01
 Episodes Per Batch: 4
e Gamma: 0.99
TODO: Add results graph

Example:
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from pl _bolts.models.rl import Reinforce
reinforce = Reinforce ("CartPole-v0")
trainer = Trainer|()

trainer.fit (reinforce)

class pl_bolts.models.rl.reinforce_model.Reinforce (env, gamma=0.99, I[r=0.01,
batch_size=8, n_steps=10,
avg_reward_len=100,
entropy_beta=0.01,
epoch_len=1000,
num_batch_episodes=4,
**kwargs)

Bases: pytorch_lightning.

PyTorch Lightning implementation of REINFORCE Paper authors: Richard S. Sutton, David McAllester, Satin-
der Singh, Yishay Mansour Model implemented by:

* Donal Byrne <https://github.com/djbyrne>

Example

>>> from pl_bolts.models.rl.reinforce _model import Reinforce

>>> model = Reinforce ("CartPole-v0")

Train:
trainer = Trainer ()

trainer.fit (model)

Note: This example is based on: https://github.com/PacktPublishing/
Deep-Reinforcement-Learning-Hands-On-Second-Edition/blob/master/Chapter11/02_cartpole_reinforce.py

Note: Currently only supports CPU and single GPU training with distributed_backend=dp

Parameters
* env{ (str)- gym environment tag
* gammay (f loat) — discount factor
* 1r{ (float) — learning rate
* batch_size{ (int) - size of minibatch pulled from the Datal.oader
* n_steps{ (int)— number of stakes per discounted experience
* entropy_beta{ (float) — entropy coefficient
* epoch_len{ (int)—how many batches before pseudo epoch

* num_batch_episodes{ (int)—how many episodes to rollout for each batch of train-
ing

* avg_reward_len{ (int) — how many episodes to take into account when calculating
the avg reward
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static add_model_specific_args (arg_parser)
Adds arguments for DQN model

Note: These params are fine tuned for Pong env.

Parameters arg_parser{ — the current argument parser to add to
Return type ArgumentParser
Returns arg_parser with model specific cargs added

calc_gvals (rewards)
Calculate the discounted rewards of all rewards in list

Parameters rewards{ (List[float]) - list of rewards from latest batch
Return type List[float]
Returns list of discounted rewards

configure_optimizers ()
Initialize Adam optimizer

Return type List[Optimizer]

discount_rewards (experiences)
Calculates the discounted reward over N experiences

Parameters experiences{ (Tuple[Experience])— Tuple of Experience
Return type float
Returns total discounted reward

forward (x)
Passes in a state x through the network and gets the q_values of each action as an output

Parameters xJ (Tensor) —environment state
Return type Tensor
Returns q values

get_device (batch)
Retrieve device currently being used by minibatch

Return type str

train_batch ()
Contains the logic for generating a new batch of data to be passed to the DatalLoader

Yields yields a tuple of Lists containing tensors for states, actions and rewards of the batch.
Return type Tuple[List[Tensor], List[Tensor], List[Tensor]]

train_dataloader ()
Get train loader

Return type Datal.oader

training_step (batch, _)
Carries out a single step through the environment to update the replay buffer. Then calculates loss based
on the minibatch recieved

Parameters
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* batch{ (Tuple[Tensor, Tensor])— current mini batch of replay data
e 9 — batch number, not used
Return type OrderedDict

Returns Training loss and log metrics

22.3.2 Vanilla Policy Gradient

Vanilla Policy Gradient model introduced in Policy Gradient Methods For Reinforcement Learning With Function
Approximation Paper authors: Richard S. Sutton, David McAllester, Satinder Singh, Yishay Mansour

Original implementation by: Donal Byrne

Vanilla Policy Gradient (VPG) expands upon the REINFORCE algorithm and improves some of its major issues. The
major issue with REINFORCE is that it has high variance. This can be improved by subtracting a baseline value from
the Q values. For this implementation we use the average reward as our baseline.

Although Policy Gradients are able to explore naturally due to the stochastic nature of the model, the agent can still
frequently be stuck in a local optima. In order to improve this, VPG adds an entropy term to improve exploration.

H(m)=— Z 7(als)logw(als)

To further control the amount of additional entropy in our model we scale the entropy term by a small beta value. The
scaled entropy is then subtracted from the policy loss.

VPG Benefits

¢ Addition of the baseline reduces variance in the model

* Improved exploration due to entropy bonus

VPG Results

Hyperparameters:
* Batch Size: 8
* Learning Rate: 0.001
* N Steps: 10
* N environments: 4
* Entropy Beta: 0.01
* Gamma: 0.99

Example:

from pl bolts.models.rl import VanillaPolicyGradient
vpg = VanillaPolicyGradient ("CartPole-v0")

trainer = Trainer ()

trainer.fit (vpg)
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class pl_bolts.models.rl.vanilla_policy_gradient_model.VanillaPolicyGradient (env,

gamma=0.99,
Ir=0.01,
batch_size=S8,
n_steps=10,
avg_reward_len=1(
en-
tropy_beta=0.01,
epoch_len=1000,

**kwargs)
Bases: pytorch_lightning.
PyTorch Lightning implementation of Vanilla Policy Gradient
Paper authors: Richard S. Sutton, David McAllester, Satinder Singh, Yishay Mansour
Model implemented by:
e Donal Byrne <https://github.com/djbyrne>
Example
>>> from pl_bolts.models.rl.vanilla_policy_gradient_model import
—VanillaPolicyGradient
>>> model = VanillaPolicyGradient ("CartPole-v0")
Train:
trainer = Trainer ()
trainer.fit (model)
Note: This example is based on: https://github.com/PacktPublishing/

Deep-Reinforcement-Learning-Hands-On-Second-Edition/blob/master/Chapter11/04_cartpole_pg.py

Note: Currently only supports CPU and single GPU training with distributed_backend=dp

Parameters
* env{ (str)- gym environment tag
e gammay (f loat) — discount factor
* 1r{ (float) — learning rate
* batch_size{ (int) - size of minibatch pulled from the DatalLoader
* batch_episodes{ — how many episodes to rollout for each batch of training
* entropy_beta{ (float) — dictates the level of entropy per batch

* avg_reward len{ (int) — how many episodes to take into account when calculating
the avg reward

* epoch_len{ (int)—how many batches before pseudo epoch
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static add_model_specific_args (arg_parser)
Adds arguments for DQN model

Note: These params are fine tuned for Pong env.

Parameters arg_parser{ — the current argument parser to add to
Return type ArgumentParser
Returns arg_parser with model specific cargs added

compute_returns (rewards)
Calculate the discounted rewards of the batched rewards

Parameters rewards{ — list of batched rewards
Returns list of discounted rewards

configure_optimizers ()
Initialize Adam optimizer

Return type List[Optimizer]

forward (x)
Passes in a state x through the network and gets the q_values of each action as an output

Parameters x{ (Tensor) —environment state
Return type Tensor
Returns q values

get_device (batch)
Retrieve device currently being used by minibatch

Return type str

loss (states, actions, scaled_rewards)
Calculates the loss for VPG

Parameters

* states{ - batched states

¢ actions{ — batch actions

e scaled_rewards{ — batche Q values
Return type Tensor
Returns loss for the current batch

train_batch ()
Contains the logic for generating a new batch of data to be passed to the Datal.oader

Return type Tuple[List[Tensor], List[Tensor], List[Tensor]]
Returns yields a tuple of Lists containing tensors for states, actions and rewards of the batch.

train _dataloader ()
Get train loader

Return type DatalLoader
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training_step (batch, _)
Carries out a single step through the environment to update the replay buffer. Then calculates loss based
on the minibatch recieved

Parameters
* batch{ (Tuple[Tensor, Tensor])— current mini batch of replay data
e 9 —batch number, not used

Return type OrderedDict

Returns Training loss and log metrics
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CHAPTER
TWENTYTHREE

SELF-SUPERVISED LEARNING

This bolts module houses a collection of all self-supervised learning models.

Self-supervised learning extracts representations of an input by solving a pretext task. In this package, we implement
many of the current state-of-the-art self-supervised algorithms.

Self-supervised models are trained with unlabeled datasets

23.1 Use cases

Here are some use cases for the self-supervised package.

23.1.1 Extracting image features

The models in this module are trained unsupervised and thus can capture better image representations (features).

In this example, we’ll load a resnet 18 which was pretrained on imagenet using CPC as the pretext task.

from pl_bolts.models.self supervised import SimCLR

# load resnet50 pretrained using SimCLR on imagenet

weight_path = 'https://pl-bolts-weights.s3.us-east-2.amazonaws.com/simclr/bolts_
—simclr_imagenet/simclr_imagenet.ckpt'

simclr = SimCLR.load_from_checkpoint (weight_path, strict=False)

simclr_resnet50 = simclr.encoder
simclr_resnet50.eval ()

This means you can now extract image representations that were pretrained via unsupervised learning.

Example:

my_dataset = SomeDataset ()
for batch in my_dataset:

%X, y = batch

out = simclr_resnet50 (x)
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23.1.2 Train with unlabeled data

These models are perfect for training from scratch when you have a huge set of unlabeled images

from pl _bolts.models.self supervised import SimCLR
from pl bolts.models.self supervised.simclr import SimCLREvalDataTransform,
—SimCLRTrainDataTransform

train_dataset = MyDataset (transforms=SimCLRTrainDataTransform())
val_dataset = MyDataset (transforms=SimCLREvalDataTransform())

# simclr needs a lot of compute!
model = SimCLR ()
trainer = Trainer (tpu_cores=128)
trainer.fit (
model,
DataLoader (train_dataset),
DatalLoader (val_dataset),

23.1.3 Research

Mix and match any part, or subclass to create your own new method

from pl _bolts.models.self supervised import CPC_v2
from pl bolts.losses.self supervised learning import FeatureMapContrastiveTask

amdim_task = FeatureMapContrastiveTask (comparisons='01, 11, 02', bidirectional=True)
model = CPC_v2 (contrastive_task=amdim_task)

23.2 Contrastive Learning Models

Contrastive self-supervised learning (CSL) is a self-supervised learning approach where we generate representations of
instances such that similar instances are near each other and far from dissimilar ones. This is often done by comparing
triplets of positive, anchor and negative representations.

In this section, we list Lightning implementations of popular contrastive learning approaches.

23.2.1 AMDIM

class pl_bolts.models.self_supervised.AMDIM (datamodule='cifarl0’, en-
coder="amdim_encoder’, con-
trastive_task=torch.nn.Module, im-
age_channels=3, image_height=32,
encoder_feature_dim=320, embed-
ding_fx_dim=1280, conv_block_depth=10,
use_bn=Fualse, tclip=20.0, learn-
ing_rate=0.0002, data_dir="",
num_classes=10, batch_size=200,

num_workers=16, **kwargs)
Bases: pytorch_lightning.
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PyTorch Lightning implementation of Augmented Multiscale Deep InfoMax (AMDIM).

Paper authors: Philip Bachman, R Devon Hjelm, William Buchwalter.

Model implemented by: William Falcon

This code is adapted to Lightning using the original author repo (the original repo).

Example

>>> model

>>> from pl_bolts.models.self supervised import AMDIM

= AMDIM (encoder="'resnet1l8")

Train:

trainer =

Trainer ()
trainer.fit (model)

Parameters

datamodule{ (Union[str, LightningDataModule]) — A LightningDatamodule
encoder (Union[str, Module, LightningModule]) — an encoder string or model
image_channels{ (int)-3

image height{ (int) — pixels

encoder_feature_dim{ (int)— Called ndf in the paper, this is the representation size
for the encoder.

embedding_ fx_dim{ (int) — Output dim of the embedding function (nrkhs in the pa-
per) (Reproducing Kernel Hilbert Spaces).

conv_block_depth{ (int)— Depth of each encoder block,
use_bn{ (bool) - If true will use batchnorm.

teclip¥ (int) - soft clipping non-linearity to the scores after computing the regularization
term and before computing the log-softmax. This is the ‘second trick’ used in the paper

learning_rate{ (int)— The learning rate
data_dir{ (str)— Where to store data
num_classes{ (int)— How many classes in the dataset

batch_size{ (int) — The batch size

23.2.2 BYOL

class pl_bolts.models.self_supervised.BYOL (num_classes, learning_rate=0.2,
weight_decay=1.5¢-06, input_height=32,
batch_size=32, num_workers=0,
warmup_epochs=10, max_epochs=1000,
**kwargs)

Bases: pytorch_lightning.

PyTorch Lightning implementation of Bootstrap Your Own Latent (BYOL)

23.2. Contrastive Learning Models
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Paper authors: Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre H. Richemond, Elena
Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Daniel Guo, Mohammad Gheshlaghi Azar, Bilal
Piot, Koray Kavukcuoglu, Rémi Munos, Michal Valko.

Model implemented by:
¢ Annika Brundyn

Warning: Work in progress. This implementation is still being verified.

TODOs:
* verify on CIFAR-10
¢ verify on STL-10

e pre-train on imagenet

Example:

model = BYOL (num_classes=10)

dm = CIFARl1ODataModule (num_workers=0)

dm.train_transforms = SimCLRTrainDataTransform(32)
dm.val_transforms = SimCLREvalDataTransform(32)
trainer = pl.Trainer ()

trainer.fit (model, datamodule=dm)

Train:

trainer = Trainer ()
trainer.fit (model)

CLI command:

# cifarlO0
python byol_module.py —--gpus 1

# imagenet
python byol_module.py
—-—gpus 8
——dataset imagenet2012
--data_dir /path/to/imagenet/
—--meta_dir /path/to/folder/with/meta.bin/
——batch_size 32

Parameters
* datamodule{ — The datamodule
* learning_rate{ (float) — the learning rate
* weight_decay{ (f1oat) — optimizer weight decay
* input_height{ (int) —image input height
e batch_size{ (int) — the batch size

e num_workers{ (int)— number of workers
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* warmup_epochs{ (int)—num of epochs for scheduler warm up

* max_epochs{ (int)— max epochs for scheduler

23.2.3 CPC (V2)

PyTorch Lightning implementation of Data-Efficient Image Recognition with Contrastive Predictive Coding

Paper authors: (Olivier J. Hénaff, Aravind Srinivas, Jeffrey De Fauw, Ali Razavi, Carl Doersch, S. M. Ali Eslami,
Aaron van den Oord).

Model implemented by:
¢ William Falcon
¢ Tullie Murrell

To Train:

import pytorch_lightning as pl

from pl bolts.models.self supervised import CPC_v2

from pl bolts.datamodules import CIFARl1ODataModule

from pl_bolts.models.self supervised.cpc import (
CPCTrainTransformsCIFAR10, CPCEvalTransformsCIFAR1O0)

# data
dm = CIFARl1ODataModule (num_workers=0)
dm.train_transforms = CPCTrainTransformsCIFAR1O0 ()

dm.val_transforms = CPCEvalTransformsCIFAR1O ()

# model
model = CPC_v2()

# fit
trainer = pl.Trainer ()
trainer.fit (model, datamodule=dm)

To finetune:

python cpc_finetuner.py
—-—ckpt_path path/to/checkpoint.ckpt
--dataset cifarlO
—-—gpus 1

CIFAR-10 and STL-10 baselines

CPCv2 does not report baselines on CIFAR-10 and STL-10 datasets. Results in table are reported from the YADIM
paper.
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Table 1: CPCv2 implementation results

Dataset test acc Encoder Opti- Batch | Epochs Hardware LR
mizer

CIFAR-10 84.52 CPCresnet101 Adam 64 1000 (upto 24 | 1 V100 | 4e-5
hours) (32GB)

STL-10 78.36 CPCresnet101 Adam 144 1000 (upto 72 | 4 V100 | le-4
hours) (32GB)

ImageNet 54.82 CPCresnet101 Adam 3072 | 1000 (upto 21 | 64 V100 | 4e-5
days) (32GB)

CIFAR-10 pretrained model:

from pl bolts.models.self supervised import CPC_v2

weight_path = 'https://pl-bolts-weights.s3.us-east-2.amazonaws.com/cpc/cpc-cifarl0-v4-
—exp3/epoch%3D474.ckpt’

cpc_v2 = CPC_v2.load_from_checkpoint (weight_path, strict=False)

cpc_v2.freeze ()

 Tensorboard for CIFAR10
Pre-training:

val_nce

]
]

Fine-tuning:
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ft_callback_mlp_acc

]
(|

STL-10 pretrained model:

140k

160k

from pl bolts.models.self supervised import CPC_v2

weight_path = 'https://pl-bolts-weights.s3.us-east-2.amazonaws.com/cpc/cpc—st110-v0—

—exp3/epoch%3D624.ckpt'’
cpc_v2 = CPC_v2.load_from_checkpoint (weight_path,

cpc_v2.freeze ()

strict=False)

e Tensorboard for STL10
Pre-training:

val_nce

Fine-tuning:
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ft_callback_mlp_acc

1]
(%]

23.2.4 CPC (v2) API

class pl_bolts.models.self_supervised.CPC_v2 (encoder_name='cpc_encoder’,
patch_size=8, patch_overlap=4, on-
line_ft=True, task='cpc', num_workers=4,
num_classes=10, learning_rate=0.0001,

pretrained=None, **kwargs)
Bases: pytorch_lightning.

Parameters

* encoder_name{ (str) — A string for any of the resnets in torchvision, or the original
CPC encoder, or a custon nn.Module encoder

* patch_size{ (int)— How big to make the image patches

* patch_overlap (int)— How much overlap each patch should have

e online_ ft{ (bool)—If True, enables a 1024-unit MLP to fine-tune online
* task{ (str)— Which self-supervised task to use (‘cpc’, ‘amdim’, etc...)

* num_workers{ (int)— number of dataloader workers

* num_classes{ (int)— number of classes

* learning_rate{ (float) - learning rate

* pretrained{ (Optional[str])—If true, will use the weights pretrained (using CPC)
on Imagenet

23.2.5 Moco (v2) API

class pl_bolts.models.self_supervised.Moco_v2 (base_encoder='"resnetl8', emb_dim=128,

num_negatives=65536, en-
coder_momentum=0.999, soft-
max_temperature=0.07, learn-
ing_rate=0.03, momentum=0.9,
weight_decay=0.0001, data_dir="/',
batch_size=256, use_mlp=~False,

num_workers=8, *args, **kwargs)
Bases: pytorch_lightning.

PyTorch Lightning implementation of Moco

Paper authors: Xinlei Chen, Haoqi Fan, Ross Girshick, Kaiming He.
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Code adapted from facebookresearch/moco to Lightning by:

¢ William Falcon

Example:: from pl_bolts.models.self_supervised import Moco_v2 model = Moco_v2() trainer = Trainer()
trainer.fit(model)

CLI command:

# cifarlO0

# imagenet
python moco2_module.py
——gpus 8
——-dataset imagenet2012
--data_dir /path/to/imagenet/
—--meta_dir /path/to/folder/with/meta.bin/
——batch_size 32

python moco2_module.py —-gpus 1

Parameters

base_encoder{ (Union[str, Module])-torchvision model name or torch.nn.Module
emb_dim{ (int) — feature dimension (default: 128)
num_negatives (int) — queue size; number of negative keys (default: 65536)

encoder_momentum{ (float) — moco momentum of updating key encoder (default:
0.999)

softmax_temperature( (float)— softmax temperature (default: 0.07)
learning rate{ (float) — the learning rate

momentum{ (f1loat) — optimizer momentum

weight_decay{ (f1loat) — optimizer weight decay

datamodule{ — the DataModule (train, val, test dataloaders)

data_dir{ (str) - the directory to store data

batch_sizef (int) - batch size

use_mlpY (bool)—add an mlp to the encoders

num_workers{ (int) — workers for the loaders

forward (img_q, img_k)

Input: im_q: a batch of query images im_k: a batch of key images

Output: logits, targets

init_encoders (base_encoder)
Override to add your own encoders
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23.2.6 SImCLR

PyTorch Lightning implementation of SimCLR
Paper authors: Ting Chen, Simon Kornblith, Mohammad Norouzi, Geoffrey Hinton.
Model implemented by:

e William Falcon

e Tullie Murrell

e Ananya Harsh Jha

To Train:

import pytorch lightning as pl

from pl _bolts.models.self supervised import SimCLR

from pl bolts.datamodules import CIFARl1ODataModule

from pl_bolts.models.self supervised.simclr.transforms import (
SimCLREvalDataTransform, SimCLRTrainDataTransform)

# data

dm = CIFARl1ODataModule (num_workers=0)

dm.train_transforms = SimCLRTrainDataTransform(32)

dm.val_transforms = SimCLREvalDataTransform(32)

# model

model = SimCLR (num_samples=dm.num_samples, batch_size=dm.batch_size,
")

# fit

trainer = pl.Trainer()

trainer.fit (model, datamodule=dm)

dataset="cifarlO

CIFAR-10 baseline

Table 2: Cifar-10 implementation results

Implemen- | test acc Encoder Opti- Batch | Epochs Hardware LR

tation mizer

Original ~94.00 resnet50 LARS 2048 | 800 TPUs 1.0/1.5

Ours 88.50 resnet50 LARS- 2048 | 800 (4 hours) 8 V100 | 1.5
SGD (16GB)

CIFAR-10 pretrained model:

from pl bolts.models.self supervised import SimCLR

weight_path =
—simclr_imagenet/simclr_imagenet.ckpt'

simclr = SimCLR.load_from_checkpoint (weight_path, strict=False)

'https://pl-bolts-weights.s3.us—-east-2.amazonaws.com/simclr/bolts_

(continues on next page)
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(continued from previous page)

simclr. freeze ()

Pre-training:

avg_val_loss
4.52
4.48
4.44
4.4

4.36

Fine-tuning (Single layer MLP, 1024 hidden units):

To reproduce:

I
X

20K

A0k

B0k

80k

100k

120k

# pretrain

python simclr_module.py
—-—gpus 8
——-dataset cifarlO
——batch_size 256
—— num_workers 16
——optimizer sgd
—-learning_rate 1.5
—-—lars_wrapper
——exclude_bn_bias
——max_epochs 800
—-—-online_ft

(continues on next page)
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val_acc

0.876
0.872
0.668
0.864

0.86
0.856

0.852

5k 10k 15k 20k 25k 30k

ra
LJ

test_acc
0.88
0.87
®
0.86
0.85
30.93k
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(continued from previous page)

# finetune
python simclr_finetuner.py
—-—gpus 4
-—ckpt_path path/to/simclr/ckpt
--dataset cifarlO
——batch_size 64
——num_workers 8
--learning_rate 0.3
——num_epochs 100

Imagenet baseline for SImMCLR

Table 3: Cifar-10 implementation results

Implemen- | test acc Encoder Opti- Batch | Epochs Hardware LR

tation mizer

Original ~69.3 resnet50 LARS 4096 | 800 TPUs 4.8

Ours 63.4 resnet50 LARS- 4096 | 800 64 V100 | 4.8
SGD (16GB)

Imagenet pretrained model:

from pl_bolts.models.self supervised import SimCLR

weight_path =
—simclr_imagenet/simclr_imagenet.ckpt'
simclr =

simclr.freeze ()

SimCLR.load_from_checkpoint (weight_path,

'https://pl-bolts-weights.s3.us—-east-2.amazonaws.com/simclr/bolts_

strict=False)

To reproduce:

# pretrain

python simclr_module.py
--dataset imagenet
--data_path path/to/imagenet

# finetune

python simclr_finetuner.py
-—gpus 8
——ckpt_path path/to/simclr/ckpt
—-—dataset imagenet
-—data_dir path/to/imagenet/dataset
——batch_size 256

(continues on next page)
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(continued from previous page)

——num_workers 16
—-—learning_rate 0.8
——nesterov True
——num_epochs 90

SimCLR API

class pl_bolts.models.self_supervised.SimCLR (gpus, num_samples, batch_size,
dataset, num_nodes=1, arch="resnet50’,
hidden_mlp=2048, feat_dim=128,
warmup_epochs=10,  max_epochs=100,
temperature=0.1, first_conv=True,
maxpooll =True, optimizer="adam’,
lars_wrapper=True, ex-
clude_bn_bias=False, start_Ir=0.0,
learning_rate=0.001, final_lr=0.0,

weight_decay=1e-06, **kwargs)
Bases: pytorch_lightning.

Parameters
e batch_size{ (int) — the batch size
* num_samples{ (int)—num samples in the dataset
* warmup_epochs{ (int) — epochs to warmup the Ir for
* 1r{ — the optimizer learning rate
* opt_weight_decay{ — the optimizer weight decay
* loss_temperature( — the loss temperature

nt_xent_loss (out_I, out_2, temperature, eps=1e-06)
assume out_1 and out_2 are normalized out_1: [batch_size, dim] out_2: [batch_size, dim]

23.2.7 SwAV

PyTorch Lightning implementation of SWAV Adapted from the official implementation
Paper authors: Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski, Armand Joulin.
Implementation adapted by:

e Ananya Harsh Jha

To Train:

import pytorch lightning as pl

from pl _bolts.models.self supervised import SwAV

from pl _bolts.datamodules import STL10DataModule

from pl _bolts.models.self supervised.swav.transforms import (
SwAVTrainDataTransform, SwAVEvalDataTransform

)

from pl bolts.transforms.dataset_normalizations import stll0_normalization

# data

(continues on next page)
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batch_size = 128

dm = STL1l0DataModule (data_dir='."', batch_size=batch_size)
dm.train_dataloader = dm.train_dataloader_mixed
dm.val_dataloader = dm.val_dataloader_mixed

dm.train_transforms = SwAVTrainDataTransform
normalize=stl110_normalization ()

dm.val_transforms = SwAVEvalDataTransform(
normalize=stl10_normalization ()

# model
model = SwAV (
gpus=1,

num_samples=dm.num_unlabeled_samples,
dataset='st110"',
batch_size=batch_size

# fit
trainer = pl.Trainer (precision=16)
trainer.fit (model)

Pre-trained ImageNet

We have included an option to directly load ImageNet weights provided by FAIR into bolts.
You can load the pretrained model using:

ImageNet pretrained model:

from pl bolts.models.self supervised import SwAV
weight_path = 'https://pl-bolts-weights.s3.us-east-2.amazonaws.com/swav/swav_imagenet/
—swav_imagenet.pth.tar'

swav = SwAV.load_from_checkpoint (weight_path, strict=True)

swav.freeze ()

STL-10 baseline

The original paper does not provide baselines on STL10.
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Table 4: STL-10 implementation results

Imple- test Encoder Opti- Batch Queue Epochs Hardware LR

menta- acc mizer used

tion

Ours 86.72 SwAV resnet50 | LARS 128 | No 100 (~9 hr) 1 V100 | 1e-3
(16GB)

* Pre-training tensorboard link

STL-10 pretrained model:

from pl bolts.models.self supervised import SwAV

weight_path

= 'https://pl-bolts-weights.s3.us-east-2.amazonaws.com/swav/checkpoints/

—swav_stll0.pth.tar’

swav =

swav.freeze ()

SwAV.load_from_checkpoint (weight_path,

strict=False)

Pre-training:

1]
]

val_mip_ace

]
]
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Fine-tuning (Single layer MLP, 1024 hidden units):

val_acc

0.86

I}
(%]

val_loss

]
]

To reproduce:

# pretrain

python swav_module.py
—-—online_ft
—-—gpus 1
—-—lars_wrapper
——batch_size 128
—--learning_rate le-3
—-—gaussian_blur
——gueue_length 0
--jitter_strength 1.
—-—nmb_prototypes 512

# finetune

python swav_finetuner.py

—-—gpus 8

—-—ckpt_path path/to/simclr/ckpt
——dataset imagenet

-—data_dir path/to/imagenet/dataset
——batch_size 256

(continues on next page)
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(continued from previous page)

——num_workers 16
——learning_rate 0.8
——nesterov True
——num_epochs 90

Imagenet baseline for SWAV

Table 5: Cifar-10 implementation results

Implemen- | test acc Encoder Opti- Batch | Epochs Hardware LR

tation mizer

Original 75.3 resnet50 LARS 4096 | 800 64 V100s 4.8

Ours 74 resnet50 LARS- 4096 | 800 64 V100 | 4.8
SGD (16GB)

Imagenet pretrained model:

from pl bolts.models.self supervised import SwAV
weight_path = 'https://pl-bolts-weights.s3.us-east-2.amazonaws.com/swav/bolts_swav_
—imagenet/swav_imagenet.ckpt'

swav = SwAV.load_from_checkpoint (weight_path, strict=False)

swav.freeze ()

SwAV API

class pl_bolts.models.self_supervised.SwAV (gpus, num_samples, batch_size,
dataset, num_nodes=1,
arch="resnet50’, hidden_mlp=2048,
feat_dim=128, warmup_epochs=10,
max_epochs=100, nmb_prototypes=3000,
[freeze_prototypes_epochs=1, tem-
perature=0.1, sinkhorn_iterations=3,
queue_length=0, queue_path="queue',

epoch_queue_starts=15,
crops_for_assign=[0, 1], nmb_crops=[2,

6], first_conv=True, maxpooll=True,
optimizer="adam’, lars_wrapper=True,
exclude_bn_bias=False, start_Ir=0.0,
learning_rate=0.001, final_lr=0.0,
weight_decay=1e-06, epsilon=0.05,
**kwargs)

Bases: pytorch_lightning.
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Parameters

gpus{ (int) — number of gpus per node used in training, passed to SWAV module to
manage the queue and select distributed sinkhorn

num_nodes{ (int)— number of nodes to train on
num_samples{ (int)— number of image samples used for training
batch_size{ (int) — batch size per GPU in ddp

dataset (st r) — dataset being used for train/val

arch{ (str) — encoder architecture used for pre-training

hidden_mlp{ (int) — hidden layer of non-linear projection head, set to O to use a linear
projection head

feat_dim{ (int) - output dim of the projection head
warmup_epochs{ (int) — apply linear warmup for this many epochs
max_epochs{ (int) — epoch count for pre-training
nmb_prototypes{ (int) — count of prototype vectors

freeze_prototypes_epochs{ (int) — epoch till which gradients of prototype layer
are frozen

temperature( (float) —loss temperature
sinkhorn_iterations{ (int) — iterations for sinkhorn normalization

queue_length{ (int) — set queue when batch size is small, must be divisible by total
batch-size (i.e. total_gpus * batch_size), set to O to remove the queue

queue_path{ (str) — folder within the logs directory
epoch_queue_starts{ (int) — start uing the queue after this epoch
crops_for_assign{ (1ist) - list of crop ids for computing assignment
nmb_crops{ (1ist)—number of global and local crops, ex: [2, 6]

first_conv{ (bool) —keep first conv same as the original resnet architecture, if set to
false it is replace by a kernel 3, stride 1 conv (cifar-10)

maxpooll (bool) — keep first maxpool layer same as the original resnet architecture, if
set to false, first maxpool is turned off (cifar10, maybe st110)

optimizer{ (str)— optimizer to use
lars_wrapper{ (bool) —use LARS wrapper over the optimizer

exclude_bn_bias{ (bool) — exclude batchnorm and bias layers from weight decay in
optimizers

start_1r{ (float) — starting Ir for linear warmup

learning rate{ (float) —learning rate

final_ 1r{ (float) - float = final learning rate for cosine weight decay
weight_decay{ (float) — weight decay for optimizer

epsilon{ (float) — epsilon val for swav assignments
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CHAPTER
TWENTYFOUR

LEARNING RATE SCHEDULERS

This package lists common learning rate schedulers across research domains (This is a work in progress. If you have
any learning rate schedulers you want to contribute, please submit a PR!)

Note: this module is a work in progress

24.1 Your Learning Rate Scheduler

We’re cleaning up many of our learning rate schedulers, but in the meantime, submit a PR to add yours here!

24.2 Linear Warmup Cosine Annealing Learning Rate Scheduler

class pl_bolts.optimizers.lr scheduler.LinearWarmupCosineAnnealingLR (optimizer,
warmup_epochs,
max_epochs,
warmup_start_lr=0.0,
eta_min=0.0,
last_epoch=-

1)
Bases: torch.optim.lr_scheduler.

Sets the learning rate of each parameter group to follow a linear warmup schedule between warmup_start_Ir and
base_Ir followed by a cosine annealing schedule between base_lIr and eta_min.

Warning: It is recommended to call step () for LinearWarmupCosineAnneal ingLR after each
iteration as calling it after each epoch will keep the starting Ir at warmup_start_Ir for the first epoch which is
0 in most cases.

Warning: passing epoch to step() is being deprecated and comes with an
EPOCH_DEPRECATION_WARNING. It calls the _get_closed_form_1r () method for this
scheduler instead of get_1r (). Though this does not change the behavior of the scheduler, when passing
epoch param to step (), the user should call the step () function before calling train and validation
methods.
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Example

>>> layer = nn.Linear (10, 1)

>>> optimizer = Adam(layer.parameters(), 1lr=0.02)

>>> scheduler = LinearWarmupCosineAnnealingLR (optimizer, warmup_epochs=10, max_

—epochs=40)

>>> #

>>> # the default case

>>> for epoch in range (40):

# train(...)

# validate(...)

.. scheduler.step ()

>>> #

>>> # passing epoch param case

>>> for epoch in range (40):
scheduler.step (epoch)
# train(...)
# validate(...)

Parameters
* optimizer{ (Optimizer)— Wrapped optimizer.
* warmup_epochs/ (int)— Maximum number of iterations for linear warmup
* max_epochs{ (int) - Maximum number of iterations
*» warmup_start_1r{ (float)— Learning rate to start the linear warmup. Default: 0.
* eta_min{ (float)— Minimum learning rate. Default: 0.
* last_epoch{ (int)— The index of last epoch. Default: -1.

get_1r()
Compute learning rate using chainable form of the scheduler

Return type List[float]
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CHAPTER
TWENTYFIVE

SELF-SUPERVISED LEARNING TRANSFORMS

These transforms are used in various self-supervised learning approaches.

25.1 CPC transforms

Transforms used for CPC

25.1.1 CIFAR-10 Train (c)

class pl_bolts.models.self_supervised.cpc.transforms.CPCTrainTransformsCIFARI1O (patch_size=8,
over-
lap=4)
Bases: object

Transforms used for CPC:

Transforms:

random_flip

img_jitter

col_jitter

rnd_gray

transforms.ToTensor ()

normalize

Patchify (patch_size=patch_size, overlap_size=patch_size // 2)

Example:

# in a regular dataset
CIFAR10(..., transforms=CPCTrainTransformsCIFAR1O ())

# in a DataModule

module = CIFAR1ODataModule (PATH)

train_loader = module.train_dataloader (batch_size=32, |,
—transforms=CPCTrainTransformsCIFAR1O0 ())

Parameters
* patch_size{ —size of patches when cutting up the image into overlapping patches

* overlap{ —how much to overlap patches
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__call__ (inp)
Call self as a function.

25.1.2 CIFAR-10 Eval (c)

class pl_bolts.models.self_supervised.cpc.transforms.CPCEvalTransformsCIFAR1O (patch_size=8,

over-
lap=4)

Bases: object

Transforms used for CPC:

Transforms:

random_flip

transforms.ToTensor ()

normalize

Patchify (patch_size=patch_size, overlap_size=overlap)

Example:

# in a regu
CIFAR1O (..

# in a Data

train_loade

—transforms=CPCEvalTransformsCIFAR1O())

., transforms=CPCEvalTransformsCIFAR1O0())

Module
module = CIFAR1ODataModule (PATH)

lar dataset

r = module.train_dataloader (batch_size=32,

Parameters

* patch_size{ (int) - size of patches when cutting up the image into overlapping patches

* overlap{ (int)—how much to overlap patches

__call__ (inp)
Call self as a function.

25.1.3 Imagenet Train (c)

class pl_bolts.models.self_supervised.cpc.transforms.CPCTrainTransformsImageNet128 (patch_size:

over-

lap=16)

Bases: object

Transforms used for CPC:

Transforms:

random_flip

transforms.ToTensor ()

normalize

Patchify (patch_size=patch_size, overlap_size=patch_size // 2)

Example:
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# in a regular dataset
Imagenet (..., transforms=CPCTrainTransformsImageNetl128())

# in a DataModule

module ImagenetDataModule (PATH)

train_loader = module.train_dataloader (batch_size=32, |,
—transforms=CPCTrainTransformsImageNet128())

Parameters

* patch_size{ (int)-size of patches when cutting up the image into overlapping patches
* overlap{ (int)—how much to overlap patches

__call__ (inp)
Call self as a function.

25.1.4 Imagenet Eval (c)

class pl_bolts.models.self_supervised.cpc.transforms.CPCEvalTransformsImageNet128 (parch_size=.

over-
lap=16)

Bases: object

Transforms used for CPC:

Transforms:

random_flip
transforms.ToTensor ()
normalize

Patchify (patch_size=patch_size, overlap_size=patch_size // 2)

Example:

# in a regular dataset
Imagenet (..., transforms=CPCEvalTransformsImageNetl128())

# in a DataModule

module ImagenetDataModule (PATH)

train_loader module.train_dataloader (batch_size=32,
—transforms=CPCEvalTransformsImageNet1l28())

Parameters

* patch_size{ (int)-size of patches when cutting up the image into overlapping patches
* overlap{ (int)—how much to overlap patches

__call__ (inp)
Call self as a function.
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25.1.5 STL-10 Train (c)

class pl_bolts.models.self_supervised.cpc.transforms.CPCTrainTransformsSTL10 (patch_size=16,

over-
lap=38)

Bases: object

Transforms used for CPC:

Transforms:

random_flip

img_jitter

col_jitter

rnd_gray

transforms.ToTensor ()

normalize

Patchify (patch_size=patch_size, overlap_size=patch_size // 2)

Example:

# in a regular dataset
STL10 (..., transforms=CPCTrainTransformsSTL10())

# in a DataModule

module = STLl10DataModule (PATH)

train_loader = module.train_dataloader (batch_size=32,
—transforms=CPCTrainTransformsSTL10 ())

Parameters
* patch_size{ (int) - size of patches when cutting up the image into overlapping patches
* overlap (int)—how much to overlap patches

__call__ (inp)
Call self as a function.

25.1.6 STL-10 Eval (c)

class pl_bolts.models.self_supervised.cpc.transforms.CPCEvalTransformsSTL10 (parch_size=16,
over-
lap=38)
Bases: object
Transforms used for CPC:

Transforms:

random_flip

transforms.ToTensor ()

normalize

Patchify (patch_size=patch_size, overlap_size=patch_size // 2)

Example:
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# in a regular dataset
STL10 (..., transforms=CPCEvalTransformsSTL10())

# in a DataModule

module = STLl10DataModule (PATH)

train_loader = module.train_dataloader (batch_size=32, |,
—transforms=CPCEvalTransformsSTL10 () )

Parameters
* patch_size{ (int)-size of patches when cutting up the image into overlapping patches
* overlap{ (int)—how much to overlap patches

__call__ (inp)
Call self as a function.

25.2 AMDIM transforms

Transforms used for AMDIM

25.2.1 CIFAR-10 Train (a)

class pl_bolts.models.self_supervised.amdim.transforms.AMDIMTrainTransformsCIFAR10
Bases: object

Transforms applied to AMDIM

Transforms:

img_jitter,
col_ijitter,

rnd_gray,
transforms.ToTensor (),
normalize

Example:

x = torch.rand(5, 3, 32, 32)

transform = AMDIMTrainTransformsCIFAR1O ()
(viewl, view2) = transform(x)

__call__ (inp)
Call self as a function.
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25.2.2 CIFAR-10 Eval (a)

class pl_bolts.models.self_supervised.amdim.transforms.AMDIMEvalTransformsCIFAR10
Bases: object
Transforms applied to AMDIM

Transforms:

transforms.ToTensor (),
normalize

Example:

X = torch.rand(5, 3, 32, 32)

transform = AMDIMEvalTransformsCIFAR1O ()
(viewl, view2) = transform(x)

__call__ (inp)
Call self as a function.

25.2.3 Imagenet Train (a)

class pl_bolts.models.self_supervised.amdim.transforms.AMDIMTrainTransformsImageNet128 (heig/
Bases: object
Transforms applied to AMDIM

Transforms:

img_jitter,
col_ijitter,

rnd_gray,
transforms.ToTensor (),
normalize

Example:

x = torch.rand(5, 3, 128, 128)

transform = AMDIMTrainTransformsSTL10 ()
(viewl, view2) = transform(x)

__call__ (inp)
Call self as a function.
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25.2.4 Imagenet Eval (a)

class pl_bolts.models.self_supervised.amdim.transforms.AMDIMEvalTransformsImageNet128 (height
Bases: object
Transforms applied to AMDIM

Transforms:

transforms.Resize (height + 6, interpolation=3),
transforms.CenterCrop (height),
transforms.ToTensor (),

normalize

Example:

x = torch.rand(5, 3, 128, 128)

transform = AMDIMEvalTransformsImageNetl1l28 ()
viewl = transform(x)

__call__ (inp)
Call self as a function.

25.2.5 STL-10 Train (a)

class pl_bolts.models.self_supervised.amdim.transforms.AMDIMTrainTransformsSTL10 (height=64)
Bases: object
Transforms applied to AMDIM

Transforms:

img_jitter,
col_ijitter,

rnd_gray,
transforms.ToTensor (),
normalize

Example:

x = torch.rand(5, 3, 64, 64)

transform = AMDIMTrainTransformsSTL10 ()
(viewl, view2) = transform(x)

__call__ (inp)
Call self as a function.
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25.2.6 STL-10 Eval (a)

class pl_bolts.models.self_supervised.amdim.transforms.AMDIMEvalTransformsSTL10 (height=64)
Bases: object

Transforms applied to AMDIM

Transforms:

transforms.Resize (height + 6, interpolation=3),
transforms.CenterCrop (height),
transforms.ToTensor (),

normalize

Example:

X

torch.rand (5, 3, 64, 64)

transform = AMDIMTrainTransformsSTL10 ()
viewl = transform(x)

__call__ (inp)
Call self as a function.

25.3 MOCO V2 transforms

Transforms used for MOCO V2

25.3.1 CIFAR-10 Train (m2)

class pl_bolts.models.self_supervised.moco.transforms.Moco2TrainCIFAR10Transforms (height=32)
Bases: object
Moco 2 augmentation: https://arxiv.org/pdf/2003.04297 .pdf

__call__ (inp)
Call self as a function.

25.3.2 CIFAR-10 Eval (m2)

class pl_bolts.models.self_supervised.moco.transforms.Moco2EvalCIFAR1OTransforms (height=32)
Bases: object

Moco 2 augmentation: https://arxiv.org/pdf/2003.04297.pdf

__call__ (inp)
Call self as a function.
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25.3.3 Imagenet Train (m2)

class pl_bolts.models.self_supervised.moco.transforms.Moco2TrainSTL10Transforms (height=64)
Bases: object
Moco 2 augmentation: https://arxiv.org/pdf/2003.04297 .pdf

__call__ (inp)
Call self as a function.

25.3.4 Imagenet Eval (m2)

class pl_bolts.models.self_supervised.moco.transforms.Moco2EvalSTL10Transforms (height=64)
Bases: object
Moco 2 augmentation: https://arxiv.org/pdf/2003.04297 .pdf

__call__ (inp)
Call self as a function.

25.3.5 STL-10 Train (m2)

class pl_bolts.models.self_supervised.moco.transforms.Moco2TrainImagenetTransforms (height=12
Bases: object
Moco 2 augmentation: https://arxiv.org/pdf/2003.04297.pdf

__call__ (inp)
Call self as a function.

25.3.6 STL-10 Eval (m2)

class pl_bolts.models.self supervised.moco.transforms.Moco2EvalImagenetTransforms (height=128)
Bases: object

Moco 2 augmentation: https://arxiv.org/pdf/2003.04297 .pdf

__call__ (inp)
Call self as a function.

25.4 SimCLR transforms

Transforms used for SImCLR
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25.4.1 Train (sc)

class pl_bolts.models.self_supervised.simclr.transforms.SimCLRTrainDataTransform (input_height=

Bases: object
Transforms for SImCLR

Transform:

RandomResizedCrop (size=self.input_height)
RandomHorizontalFlip ()

RandomApply ([color_jitter], p=0.8)

RandomGrayscale (p=0.2)

GaussianBlur (kernel_size=int (0.1 * self.input_height))
transforms.ToTensor ()

Example:

from pl_bolts.models.self supervised.simclr.transforms import
—SimCLRTrainDataTransform

transform = SimCLRTrainDataTransform(input_height=32)
x = sample ()
(xi, xj) = transform(x)

__call__ (sample)
Call self as a function.

25.4.2 Eval (sc)

gaus-
sian_blur=Tr
Jjit-
ter_strength=
nor-

mal-
ize=None)

class pl_bolts.models.self_supervised.simclr.transforms.SimCLREvalDataTransform (input_height=2

Bases: pl_bolts.models.self_supervised.simclr.transforms.

SimCLRTrainDataTransform
Transforms for SimCLR

Transform:

Resize (input_height + 10, interpolation=3)
transforms.CenterCrop (input_height),
transforms.ToTensor ()

Example:
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from pl_bolts.models.self supervised.simclr.transforms import
—SimCLREvalDataTransform

transform = SimCLREvalDataTransform(input_height=32)
x = sample ()
(xi, xj) = transform(x)
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CHAPTER
TWENTYSIX

SELF-SUPERVISED LEARNING

Collection of useful functions for self-supervised learning

26.1 Identity class

Example:

’from pl_bolts.utils import Identity

class pl_bolts.utils.self_supervised.Identity
Bases: torch.nn.

An identity class to replace arbitrary layers in pretrained models

Example:

from pl bolts.utils import Identity

model = resnetl8()
model.fc = Identity ()

26.2 SSL-ready resnets

Torchvision resnets with the fc layers removed and with the ability to return all feature maps instead of just the last
one.

Example:

from pl _bolts.utils.self supervised import torchvision_ssl_encoder
resnet = torchvision_ssl_encoder ('resnetl8', pretrained=False, return_all_feature_
—maps=True)

x = torch.rand(3, 3, 32, 32)

feat_maps = resnet (x)

pl_bolts.utils.self_supervised.torchvision_ssl_encoder (name, pretrained=False, re-
turn_all_feature_maps=False)
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Return type Module

26.3 SSL backbone finetuner

class pl_bolts.models.self_supervised.ssl_finetuner.SSLFineTuner (backbone,

in_features=2048,
num_classes=1000,
epochs=100,

hid-
den_dim=None,
dropout=0.0,
learn-
ing_rate=0.1,
weight_decay=1e-
06, nes-
terov=False,
sched-
uler_type='cosine’,
de-
cay_epochs=[60,
80],

gamma=0.1,

final_lr=0.0)
Bases: pytorch_lightning.

Finetunes a self-supervised learning backbone using the standard evaluation protocol of a singler layer MLP
with 1024 units

Example:

from pl _bolts.utils.self supervised import SSLFineTuner
from pl bolts.models.self supervised import CPC_v2

from pl bolts.datamodules import CIFARl1ODataModule

from pl_bolts.models.self_ supervised.cpc.transforms import
—CPCEvalTransformsCIFAR1OQ,

—CPCTrainTransformsCIFAR1O

# pretrained model
backbone = CPC_v2.load_from_checkpoint (PATH, strict=False)

# dataset + transforms

dm = CIFARl1ODataModule (data_dir=".")
dm.train_transforms = CPCTrainTransformsCIFAR1O0 ()
dm.val_transforms = CPCEvalTransformsCIFAR1O ()

# finetuner
finetuner = SSLFineTuner (backbone, in_features=backbone.z_dim, num_
—classes=backbone.num_classes)

# train
trainer = pl.Trainer ()
trainer.fit (finetuner, dm)

(continues on next page)
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# test
trainer.test (datamodule=dm)

Parameters
* backbone{ (Module) — a pretrained model
* in_features{ (int) — feature dim of backbone outputs
e num_classes{ (int) - classes of the dataset

* hidden_dim{ (Optional[int]) — dim of the MLP (1024 default used in self-
supervised literature)
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CHAPTER
TWENTYSEVEN

SEMI-SUPERVISED LEARNING

Collection of utilities for semi-supervised learning where some part of the data is labeled and the other part is not.

27.1 Balanced classes

Example:

’from pl_bolts.utils.semi_supervised import balance_classes

pl_bolts.utils.semi_supervised.balance_classes (X, Y, batch_size)
Makes sure each batch has an equal amount of data from each class. Perfect balance

Parameters
* XJ (Union[Tensor, ndarray])— input features
e Y/ (Union[Tensor, ndarray, Sequence[int]]) — mixed labels (ints)
e batch_size{ (int) — the ultimate batch size

Return type Tuple[ndarray, ndarray]

27.2 half labeled batches

Example:

’from pl_bolts.utils.semi_supervised import balance_classes

pl_bolts.utils.semi_supervised.generate_half labeled_batches (smaller_set X,
smaller_set Y,
larger_set X,
larger_set Y,

batch_size)
Given a labeled dataset and an unlabeled dataset, this function generates a joint pair where half the batches are

labeled and the other half is not

Return type Tuple[ndarray, ndarray]

159


https://docs.python.org/3/library/typing.html#typing.Union
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/typing.html#typing.Union
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/typing.html#typing.Tuple
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

Lightning-Bolts Documentation, Release 0.3.2

160 Chapter 27. Semi-supervised learning



CHAPTER
TWENTYEIGHT

SELF-SUPERVISED LEARNING CONTRASTIVE TASKS

This section implements popular contrastive learning tasks used in self-supervised learning.

28.1 FeatureMapContrastiveTask

This task compares sets of feature maps.
In general the feature map comparison pretext task uses triplets of features. Here are the abstract steps of comparison.

Generate multiple views of the same image

x1_view_1 = data_augmentation (x1)
x1_view_2 = data_augmentation (x1)

Use a different example to generate additional views (usually within the same batch or a pool of candidates)

x2_view_1 = data_augmentation (x2)
x2_view_2 = data_augmentation (x2)

Pick 3 views to compare, these are the anchor, positive and negative features

anchor = x1_view_1
positive = x1_view_2
negative = x2_view_1

Generate feature maps for each view

(a0, al, a2) = encoder (anchor)
(p0, pl, p2) = encoder (positive)

Make a comparison for a set of feature maps

phi = some_score_function ()

# the '01' comparison
score = phi (a0, pl)

# and can be bidirectional
score = phi(p0, al)

In practice the contrastive task creates a BxB matrix where B is the batch size. The diagonals for set 1 of feature maps
are the anchors, the diagonals of set 2 of the feature maps are the positives, the non-diagonals of set 1 are the negatives.
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class pl_bolts.losses.self_supervised_learning.FeatureMapContrastiveTask (comparisons='00,
11,
tclip=10.0,
bidi-
rec-

tional=True)
Bases: torch.nn.

Performs an anchor, positive negative pair comparison for each each tuple of feature maps passed.

# extract feature maps
pos_0, pos_1l, pos_2 = encoder (x_pos)
anc_0, anc_1l, anc_2 = encoder (x_anchor)

# compare only the Oth feature maps
task = FeatureMapContrastiveTask ('00")
loss, regularizer = task((pos_0), (anc_0))

# compare (pos_0 to anc_1) and (pos_0, anc_2)

task = FeatureMapContrastiveTask('01, 02")

losses, regularizer = task((pos_0, pos_1, pos_2), (anc_0, anc_1l, anc_2))
loss = losses.sum()

# compare (pos_1 vs a anc_random)
task = FeatureMapContrastiveTask ('0Or'")
loss, regularizer = task((pos_0, pos_1, pos_2), (anc_0, anc_1l, anc_2))

# with bidirectional the comparisons are done both ways
task = FeatureMapContrastiveTask ('01, 02")

# will compare the following:
# 01: (pos_0, anc_1), (anc_0, pos_1)
# 02: (pos_0, anc_2), (anc_0, pos_2)

Parameters

()

* comparisons{ (str) — groupings of feature map indices to compare (zero indexed, ‘r
means random) ex: ‘00, 1r’

* tclipf (float) — stability clipping value
* bidirectional{ (bool) - if true, does the comparison both ways

forward (anchor_maps, positive_maps)
Takes in a set of tuples, each tuple has two feature maps with all matching dimensions

Example

>>> import torch
>>> from pytorch lightning import seed_everything
>>> seed_everything (0)

0

>>> al = torch.rand (3, 5, 2, 2)
>>> a2 = torch.rand (3, 5, 2, 2)
>>> bl = torch.rand (3, 5, 2, 2)
>>> b2 = torch.rand (3, 5, 2, 2)

’

~
~

(continues on next page)
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>>> task = FeatureMapContrastiveTask('01l, 11'")

>>> losses, regularizer = task((al, a2), (bl, b2))
>>> losses

tensor ([2.2351, 2.1902])

>>> regularizer

tensor (0.0324)

static parse_map_indexes (comparisons)
Example:

>>> FeatureMapContrastiveTask.parse_map_indexes ('11")

[(1, 1)]

>>> FeatureMapContrastiveTask.parse_map_indexes('11,59")
[(1, 1), (5, 9)]

>>> FeatureMapContrastiveTask.parse_map_indexes('11,59, 2r'")
[((L1, 1), (5, 9), (2, -1)]

28.2 Context prediction tasks

The following tasks aim to predict a target using a context representation.

28.2.1 CPCContrastiveTask

This is the predictive task from CPC (v2).

task = CPCTask (num_input_channels=32)
# (batch, channels, rows, cols)
# this should be thought of as 49 feature vectors, each with 32 dims

Z = torch.random.rand (3, 32, 7, 7)

loss = task (2)

class pl_bolts.losses.self_supervised_learning.CPCTask (*args: Any, **kwargs:

Any)
Bases: torch.nn.

Loss used in CPC
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CHAPTER
TWENTYNINE

CONTRIBUTING

Welcome to the PyTorch Lightning community! We’re building the most advanced research platform on the planet to
implement the latest, best practices that the amazing PyTorch team rolls out!

29.1 Bolts Design Principles

We encourage all sorts of contributions you’re interested in adding! When coding for Bolts, please follow these
principles.

29.1.1 Simple Internal Code

It’s useful for users to look at the code and understand very quickly what’s happening. Many users won’t be engineers.
Thus we need to value clear, simple code over condensed ninja moves. While that’s super cool, this isn’t the project
for that :)

29.1.2 Force User Decisions To Best Practices

There are 1,000 ways to do something. However, eventually one popular solution becomes standard practice, and
everyone follows. We try to find the best way to solve a particular problem, and then force our users to use it for
readability and simplicity.

When something becomes a best practice, we add it to the framework. This is usually something like bits of code in
utils or in the model file that everyone keeps adding over and over again across projects. When this happens, bring
that code inside the trainer and add a flag for it.

29.1.3 Backward-compatible API

We all hate updating our deep learning packages because we don’t want to refactor a bunch of stuff. In bolts, we make
sure every change we make which could break an API is backward compatible with good deprecation warnings.
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29.1.4 Gain User Trust

As a researcher, you can’t have any part of your code going wrong. So, make thorough tests to ensure that every
implementation of a new trick or subtle change is correct.

29.1.5 Interoperability

PyTorch Lightning Bolts is highly interoperable with PyTorch Lightning and PyTorch.

29.2 Contribution Types

We are always looking for help implementing new features or fixing bugs.

A lot of good work has already been done in project mechanics (requirements/base.txt, setup.py, pep8, badges, ci,
etc...) so we’re in a good state there thanks to all the early contributors (even pre-beta release)!

29.2.1 Bug Fixes:

1. If you find a bug please submit a GitHub issue.
* Make sure the title explains the issue.

* Describe your setup, what you are trying to do, expected vs. actual behaviour. Please add configs and code
samples.

* Add details on how to reproduce the issue - a minimal test case is always best, colab is also great. Note,
that the sample code shall be minimal and if needed with publicly available data.

2. Try to fix it or recommend a solution. We highly recommend to use test-driven approach:
» Convert your minimal code example to a unit/integration test with assert on expected results.
 Start by debugging the issue... You can run just this particular test in your IDE and draft a fix.
* Verify that your test case fails on the master branch and only passes with the fix applied.

3. Submit a PR!

Note, even if you do not find the solution, sending a PR with a test covering the issue is a valid contribution and we
can help you or finish it with you :|

29.2.2 New Features:
1. Submit a GitHub issue - describe what is the motivation of such feature (adding the use case or an example is
helpful).
2. Let’s discuss to determine the feature scope.
3. Submit a PR! We recommend test driven approach to adding new features as well:
* Write a test for the functionality you want to add.
» Write the functional code until the test passes.
4. Add/update the relevant tests!

* This PR is a good example for adding a new metric, and this one for a new logger.
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29.2.3 New Models:

PyTorch Lightning Bolts makes several research models for ready usage. Following are general guidelines for adding
new models.

1. Models which are standard baselines
2. Whose results are reproduced properly either by us or by authors.

3. Top models which are not SOTA but highly cited for production usage / for other uses. (E.g. Mobile BERT,
MobileNets, FBNets).

4. Do not reinvent the wheel, natively support torchvision, torchtext, torchaudio models.
5. Use open source licensed models.

Please raise an issue before adding a new model. Please let us know why the particular model is important for bolts.
There are tons of models that keep coming. It is very difficult to support every model.

29.2.4 Test cases:
Want to keep Lightning Bolts healthy? Love seeing those green tests? So do we! How to we keep it that way? We
write tests! We value tests contribution even more than new features.

Tests are written using pytest. Tests in PyTorch Lightning bolts train model on a datamodule. Datamodule is lightning
abstraction of representing dataloader and dataset. Model is checked by simply calling . fit () function over the
datamodule.

Along with these we have tests for losses, callbacks and transforms as well.
Have a look at sample tests here.

After you have added the respective tests, you can run the tests locally with make script:

’make test

Want to add a new test case and not sure how? Talk to us!

29.3 Note before submitting the PR, make sure you have run make
isort.

29.4 Guidelines

For this section, we refer to read the parent PL guidelines
Reminder

All added or edited code shall be the own original work of the particular contributor. If you use some third-party
implementation, all such blocks/functions/modules shall be properly referred and if possible also agreed by code’s
author. For example - This code is inspired from http://....Incase you adding new dependencies,
make sure that they are compatible with the actual PyTorch Lightning license (ie. dependencies should be at least as
permissive as the PyTorch Lightning license).
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29.4.1 Question & Answer

1. How can I help/contribute?

All help is extremely welcome - reporting bugs, fixing documentation, adding test cases, solving issues and
preparing bug fixes. To solve some issues you can start with label good first issue or chose something close to
your domain with label help wanted. Before you start to implement anything check that the issue description
that it is clear and self-assign the task to you (if it is not possible, just comment that you take it and we assign it
to you...).

Is there a recommendation for branch names?

We do not rely on the name convention so far you are working with your own fork. Anyway it would be nice to
follow this convention <type>/<issue-id>_<short-name> where the types are: bugfix, feature,
docs, tests,...

I have a model in other framework than PyTorch, how do I add it here?

Since PyTorch Lightning is written on top of PyTorch. We need models in PyTorch only. Also, we would need
same or equivalent results with PyTorch Lightning after converting the models from other frameworks.
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CHAPTER
THIRTY

PL BOLTS GOVERNANCE | PERSONS OF INTEREST

30.1 Core Maintainers

William Falcon (williamFalcon) (Lightning founder)
e Jirka Borovec (Borda)

* Annika Brundyn (annikabrundyn)

¢ Ananya Harsh Jha (ananyahjha93)

Teddy Koker (teddykoker)

Akihiro Nitta (akihironitta)
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CHAPTER
THIRTYONE

CHANGELOG

All notable changes to this project will be documented in this file.

The format is based on Keep a Changelog, and this project adheres to Semantic Versioning.

31.1 [0.3.2] - 2021-03-20

31.1.1 [0.3.2] - Changed

¢ Renamed SSL modules: CPCV2 >> CPC_v2 and MocoV2 >>Moco_v2 (#585)

» Refactored setup.py to be typing friendly (#601)

31.2 [0.3.1] - 2021-03-09

31.2.1 [0.3.1] - Added

* Added Pix2Pix model (#533)

31.2.2 [0.3.1] - Changed

¢ Moved vision models (GPT2, ImageGPT, SemSegment, UNet)topl_bolts.models.vision (#561)

31.2.3 [0.3.1] - Fixed

Fixed BYOL moving average update (#574)

* Fixed custom gamma in rl (#550)

* Fixed PyTorch 1.8 compatibility issue (#580, #579)

* Fixed handling batchnorms in BatchGradientVerification (#569)

e Corrected num_rows calculation in LatentDimInterpolator callback (#573)
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31.3 [0.3.0] - 2021-01-20

31.3.1 [0.3.0] - Added

* Added input_channels argument to UNet (#297)

* Added SwAV (#239, #3438, #323)

¢ Added data monitor callbacks ModuleDataMonitor and TrainingDataMonitor (#285)
* Added DCGAN module (#403)

* Added VisionDataModule as parent class for BinaryMNISTDataModule, CIFAR10DataModule,
FashionMNISTDataModule, and MNISTDataModule (#400)

¢ Added GIoU loss (#347)

¢ Added IoU loss (#469)

* Added semantic segmentation model SemSegment with UNet backend (#259)
¢ Added pption to normalize latent interpolation images (#438)

* Added flags to datamodules (#388)

¢ Added metric GIoU (#347)

¢ Added Intersection over Union Metric/Loss (#469)

¢ Added SimSiam model (#407)

* Added gradient verification callback (#465)

¢ Added Backbones to FRCNN (#475)

31.3.2 [0.3.0] - Changed

* Decoupled datamodules from models (#332, #270)
* Set PyTorch Lightning 1.0 as the minimum requirement (#274)

e Moved pl_bolts.callbacks.self_supervised.BYOLMAWeightUpdate to pl_bolts.
callbacks.byol_updates.BYOLMAWeightUpdate (#288)

e Moved pl_bolts.callbacks.self_supervised.SSLOnlineEvaluator to pl_bolts.
callbacks.ssl_online.SSLOnlineEvaluator (#288)

e Moved pl_bolts.datamodules.*_dataset topl_bolts.datasets.*_dataset (#275)
 Ensured sync across val/test step when using DDP (#371)

» Refactored CLI arguments of models (#394)

* Upgraded DQN to use . 1log (#404)

* Decoupled DataModules from models - CPCV2 (#386)

¢ Refactored datamodules/datasets (#338)

¢ Refactored Vision DataModules (#400)

e Refactored p1_bolts.callbacks (#477)

¢ Refactored the rest of p1_bolts.models.self_supervised (#481, #479
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e Update [torchvision.utils.make_grid(https:/pytorch.org/docs/stable/torchvision/utils.html#torchvision.utils.make_gr
kwargs to TensorboardGenerativeModel ImageSampler (#494)

31.3.3 [0.3.0] - Fixed

* Fixed duplicate warnings when optional packages are unavailable (#341)

* Fixed ModuleNotFoundError when importing datamoules (#303)

* Fixed cyclic imports in pl_bolts.utils.self_suprvised (#350)
¢ Fixed VAE loss to use KL term of ELBO (#330)

¢ Fixed dataloders of MNISTDataModule touse self.batch_size (#331)
* Fixed missing outputs in SSL hooks for PyTorch Lightning 1.0 (#277)
¢ Fixed stl10 datamodule (#369)

¢ Fixes SimCLR transforms (#329)

* Fixed binary MNIST datamodule (#377)

¢ Fixed the end of batch size mismatch (#389)

* Fixed batch_size parameter for DataModules remaining (#344)

¢ Fixed CIFAR num_samples (#432)

* Fixed DQN run_n_episodes using the wrong environment variable (#525)

31.4 [0.2.5] - 2020-10-12

* Enabled PyTorch Lightning 1.0 compatibility

31.5 [0.2.4] - 2020-10-12

¢ Enabled manual returns (#267)

31.6 [0.2.3] - 2020-10-12

31.6.1 [0.2.3] - Added

* Enabled PyTorch Lightning 0.10 compatibility (#264)
Added dummy datasets (#266)

¢ Added KittiDataModule (#248)
Added UNet (#247)

Added reinforcement learning models, losses and datamodules (#257)
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31.7 [0.2.2] - 2020-09-14

* Fixed confused logit (#222)

31.8 [0.2.1] - 2020-09-13

31.8.1 [0.2.1] - Added

* Added pretrained VAE with resnet encoders and decoders
¢ Added pretrained AE with resnet encoders and decoders
* Added CPC pretrained on CIFAR10 and STL10

* Verified BYOL implementation

31.8.2 [0.2.1] - Changed

* Dropped all dependencies except PyTorch Lightning and PyTorch
* Decoupled datamodules from GAN (#206)
* Modularize AE & VAE (#196)

31.8.3 [0.2.1] - Fixed

* Fixed gym (#221)
* Fix L1/L2 regularization (#216)

* Fix max_depth recursion crash in AsynchronousLoader (#191)

31.9 [0.2.0] - 2020-09-10

31.9.1 [0.2.0] - Added

» Enabled Apache License, Version 2.0

31.9.2 [0.2.0] - Changed

* Moved unnecessary dependencies to __main___ section in BYOL (#176)
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31.9.3 [0.2.0] - Fixed

¢ Fixed CPC STL10 finetune (#173)

31.10 [0.1.1] - 2020-08-23

31.10.1 [0.1.1] - Added

¢ Added Faster RCNN + Pscal VOC DataModule (#157)

¢ Added a better lars scheduling LARSWrapper (#162)

¢ Added CPC finetuner (#158)

¢ Added BinaryMNISTDataModule (#153)

¢ Added learning rate scheduler to BYOL (#148)

* Added Cityscapes DataModule (#136)

* Added learning rate scheduler LinearWarmupCosineAnnealingLR (#138)
¢ Added BYOL (#144)

¢ Added ConfusedLogitCallback (#118)

* Added an asynchronous single GPU dataloader. (#1521)

31.10.2 [0.1.1] - Fixed

¢ Fixed simclr finetuner (#165)

Fixed STL10 finetuner (#164)

* Fixed Image GPT (#108)

¢ Fixed unused MNIST transforms in tran/val/test (#109)

31.10.3 [0.1.1] - Changed

¢ Enhanced train batch function (#107)

31.11 [0.1.0] - 2020-07-02

31.11.1 [0.1.0] - Added

¢ Added setup and repo structure
* Added requirements

Added docs

* Added Manifest

Added coverage
Added MNIST template
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e Added VAE template

* Added GAN + AE + MNIST

* Added Linear Regression

¢ Added Moco2g

* Added simclr

* Added RL module

* Added Loggers

* Added Transforms

* Added Tiny Datasets

* Added regularization to linear + logistic models
¢ Added Linear and Logistic Regression tests
* Added Image GPT

¢ Added Recommenders module

31.11.2 [0.1.0] - Changed

* Device is no longer set in the DQN model init

Moved RL loss function to the losses module

* Moved rl.common.experience to datamodules

* train_batch function to VPG model to generate batch of data at each step (POC)

» Experience source no longer gets initialized with a device, instead the device is passed at each step()

» Refactored ExperienceSource classes to be handle multiple environments.

31.11.3 [0.1.0] - Removed

* Removed N-Step DQN as the latest version of the DQN supports N-Step by setting the n_step arg ton

* Deprecated common.experience

31.11.4 [0.1.0] - Fixed

* Documentation
* Doct tests

* CI pipeline

* Imports and pkg
* CPC fixes
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INDICES AND TABLES

* genindex
¢ modindex

¢ search
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